
Hybrid Pruning: Towards Precise Pointer and
Taint Analysis

Dipanjan Das1, Priyanka Bose1, Aravind Machiry2, Sebastiano Mariani3, Yan
Shoshitaishvili4, Giovanni Vigna1, and Christopher Kruegel1

1 University of California, Santa Barbara, California, USA
{dipanjan,priyanka,vigna,chris}@cs.ucsb.edu

2 Purdue University, Indiana, USA
amachiry@purdue.edu

3 VMware, Inc.
smariani@vmware.com

4 Arizona State University, Arizona, USA
yans@asu.edu

Abstract. Pointer and taint analyses are the building blocks for sev-
eral other static analysis techniques. Unfortunately, these techniques fre-
quently sacrifice precision in favor of scalability by over-approximating
program behaviors. Scaling these analyses to real-world codebases writ-
ten in memory-unsafe languages while retaining precision under the con-
straint of practical time and resource budgets is an open problem.
In this paper, we present a novel technique called hybrid pruning , where
we inject the information collected from a program’s dynamic trace,
which is accurate by its very nature, into a static pointer or taint analysis
system to enhance its precision. We also tackle the challenge of combin-
ing static and dynamic analyses, which operate in two different analysis
domains, in order to make the interleaving possible. Finally, we show
the usefulness of our approach by reducing the false positives emitted
by a static vulnerability detector that consumes the improved points-to
and taint information. On our dataset of 12 CGC and 8 real-world ap-
plications, our hybrid approach cuts down the warnings up to 21% over
vanilla static analysis, while reporting 19 out of 20 bugs in total.

Keywords: Pointer analysis · Taint analysis · Static vulnerability de-
tection

1 Introduction

Pointer analysis is a fundamental static program analysis technique that com-
putes the set of abstract program objects that a pointer variable may or must
point to. Pointer information is an indispensable pre-requisite for various tech-
niques operating across a spectrum of domains, ranging from programming lan-
guages, to software engineering, to system security. One such notable client is
taint analysis, which determines the set of objects in a program that are affected
by external inputs. The analysis is bootstrapped by marking an initial set of

2 Authors Suppressed Due to Excessive Length

objects that can directly be influenced by an external source (e.g., an attacker)
as tainted. During taint propagation, the taint engine consults the points-to set
of the destination operand of a program instruction, and propagates taint la-
bels according to the taint policy, and the taint labels of the source operands.
Therefore, an over-approximated points-to set quickly leads to taint explosion,
resulting in most of the program objects getting incorrectly tainted. Many static
vulnerability detection techniques employ either pointer, or taint analysis, or
a combination of both [29]. In order to not miss bugs, these techniques strive
to be sound , rather than complete. Consequently, such vulnerability detection
clients generate numerous false positives. A precise pointer or taint analysis im-
proves the false positive rate of a static vulnerability detector, thereby making
the overall result more amenable to manual triaging.

As the size of the target program grows, precise, whole program pointer and
taint analyses become prohibitively expensive. Though field, context, or flow sen-
sitivity increases the analysis precision, such an analysis pays the price in terms
of the overhead associated with the metadata management, and enumeration of
individual field, context, or flow. Oftentimes, the analyses make unsound choices
in order to remain scalable, e.g., restricting the exploration within a specific
sub-system, or making certain soundy assumptions [29] .

In this paper, we propose hybrid pruning – a novel program analysis paradigm
that augments the state-of-the-art static analysis techniques with dynamic trace
information. Our algorithm improves both the pointer and taint analyses at
those program points where static reasoning is imprecise, and precise dynamic
information is available. With the recent tide of research in fuzzing, it has become
easier to generate high-quality dynamic traces with deeper program penetration.
If the dynamic trace is available along a certain program path, our algorithm
injects guaranteed, precise yet partial ground truth to aid the static analysis
component. Although inherently unsound in principle, our strategy transitively
improves the analysis at all those program points which were previously using
the imprecise static information, thus multiplicating the advantage. However,
leveraging a dynamic trace for static analysis is non-trivial, as they operate in
two different analysis domains, e.g., concrete instructions and run-time memory
allocations vs. SSA-based IR and abstract memory objects. Our approach lifts the
dynamic trace to the static domain to make the interleaving possible. Of course,
dynamic analysis tools, such as fuzzers, will likely not succeed in exercising all
possible program paths. To compensate for the lack of dynamic coverage, we fall
back to the conservative static analysis for all other program paths for which a
dynamic trace is absent. We demonstrate two different modes of hybrid pruning
– opportunistic (Ho) and propagation-only (HP), and show when one is better than
the other depending on the quality of the dynamic trace collected. These two
modes operate along a spectrum of soundness and usability. The improvement in
points-to and taint analyses is positively correlated with the dynamic coverage.
If the dynamic coverage is moderate, the Ho mode is preferred. This mode is
designed to be more robust against the lack of dynamic information, because
it conservatively switches to pure static mode where dynamic information is

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 3

unavailable. On the other hand, the HP mode shows promise when we have high
confidence in the quality of dynamic information, as just the dynamic facts are
propagated using the static analysis algorithms in this mode.

Our work is motivated by the observation that the static bug detectors are
oftentimes notorious in emitting warnings in a volume which far surpasses the
triaging ability of the human experts. For example, as on May 7, 2022, Cover-
ity [3], a popular static bug detector, has emitted 47, 038 warnings in the Linux
kernel version 5.18.0-rc4, of which 9, 137 are still outstanding. We envision hy-
brid pruning as a technique to improve the state-of-the-art in the static bug
detection. Therefore, to evaluate the applicability of our technique in the real
world, we extended Dr.Checker [29], a purely static bug finder, to make use
of hybrid pruning. As we anticipated, the precise points-to and taint information
indeed reduced the number of false positives, while maintaining a comparable
true positive rate. On our evaluation of 12 CGC [13] applications, the bug detec-
tors relying on the Ho mode emit up to 36% less warnings, while the HP mode
reduces warnings up to 56%. We additionally show that, in spite of reducing sig-
nificant fraction of warnings, the vulnerability detectors are still able to detect
15 (HP) and 19 (Ho) out of 20 bugs in the CGC [13] and the real-world datasets
combined.

Contributions. This paper makes the following contributions:

1. Technique. We propose hybrid pruning , a new hybrid program analysis
technique that combines dynamic information with the vanilla static analysis
to develop precise pointer and taint analyses.

2. Applicability. To demonstrate the effectiveness of our hybrid technique,
we have further developed a vulnerability detection system as a client of
our improved pointer and taint analyses. It exhibits significantly lower false
positive rate as compared to its static counterpart.

3. Evaluation. We implement our approach in a practical prototype, and show
its efficacy in an experimental evaluation on two different datasets, i.e.,
CGC [13], and a collection of popular real-world programs.

2 Background

In this section, we equip the reader with the background information required
to understand our approach.

2.1 Flow-sensitive, static points-to analysis

We provide a brief overview of an Andersen-style, flow-sensitive, static points-
to (SPT) analysis technique, which we will use later on to demonstrate our
hybrid approach. The goal of any static points-to analysis is to determine the
set of objects that a given pointer can point to, at any point in the program.
Specifically, a points-to analysis answers a membership query IsPtsTo(p, x),
which indicates whether a memory object x is in the points-to set of the pointer

4 Authors Suppressed Due to Excessive Length

p. A flow-sensitive points-to analysis computes the points-to set of the pointers
according to the control-flow of the program. Given a program, the analysis
starts by generating constraints for every pointer according to their usage in the
program. The solution to the generated constraints gives the points-to results
for all the pointers. A points-to analysis either categorizes, or transforms any
program statement into one or more of the statements in Figure 1.

p = &x

lx ∈ PtsTo(p)
Address-Of

p = q

PtsTo(p) ⊇ PtsTo(q)
Copy

p = *q

PtsTo(p) ⊇ PtsTo(∗q)
Dereference

*p = q

PtsTo(∗p) ⊇ PtsTo(q)
Assign

Fig. 1: The premise (highlighted) of an inference rule represents the type of the state-
ment encountered in a program, and the conclusion corresponds to the constraints in
SPT.

PtsTo(p) ⊇ PtsTo(q) lx ∈ PtsTo(q)

lx ∈ PtsTo(p)
Copy

PtsTo(p) ⊇ PtsTo(∗q) lr ∈ PtsTo(q) lx ∈ PtsTo(r)

lx ∈ PtsTo(p)
Dereference

PtsTo(∗p) ⊇ PtsTo(q) lr ∈ PtsTo(p) lx ∈ PtsTo(q)

lx ∈ PtsTo(r)
Assign

Fig. 2: Rules to solve the SPT constraint graph.

Constraint generation. The analysis iterates over the statements in a pro-
gram, and collects the constraints according to the rules in Figure 1, where lx
and PtsTo(p) denote the location of the variable x, and the points-to set of the
pointer p respectively. The constraints are usually managed by creating a con-
straint graph, where the nodes represent pointers or memory objects, and edges
represent the constraints.

Constraint solving. Once the constraints are generated, each of the constraints
will be solved until a fixed point is reached, i.e., no changes occur to the points-
to set of all the pointers. The rules in Figure 2 are used to solve the generated
constraints.

2.2 Static taint tracking

Static Taint Tracking (STT) [36] is a data-flow tracking technique used to track
the flow of the tainted data within a program. STT is most commonly used in
vulnerability detection, where the program input is tainted, and vulnerabilities
are modeled as an usage of unsanitized data in the sensitive operations. For
example, a usage of tainted data in an arithmetic operation can cause an integer
overflow or an underflow bug. Similarly, an out-of-bounds access bug can occur
when tainted data is used as the index in an array. STT consists of the following
components:

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 5

Taint source. Functions that read an input from the user, or the environment,
e.g., read, scanf are considered as taint sources. The variables into which the
data is read are labeled as tainted.

Taint propagation. Typically, the result (destination) of an operation is labeled
tainted if any one of its operands (source) is already tainted, e.g., for a binary
operation r ← f(a, b), taint propagates to r if either a or b is tainted.

An STT requires points-to information to track the flow of tainted data
through pointers. To inject taint, the STT must know to which objects the
source pointer can point, so that it can taint all those objects. Note that an
imprecise pointer analysis could result in over-tainting, resulting in many data
elements being incorrectly considered as tainted [41]. In this paper, we use the
taint propagation rules similar to the ones proposed in Dr. Checker [29].

3 Motivation

3.1 Running example

We use the code in Listing 1.1 to explain various aspects of our technique. To
generate execution traces, we exercise the program with a test suite. However,
the part of the code highlighted in red is not executed in any of the dynamic
runs.

Points-to. The process buf() function returns either of its char pointer ar-
guments (res at Line 10, or req at Line 13) depending on the value of r (Lines 8
and 11). c buff gets assigned the pointer returned by the process buf() call
once at Line 28 (res buff), then again at Line 35 (greq), and lastly at Line 47
(q).

Taint. At Line 32, the program reads user data into the buffer pointed to by
c buff, which, in turn, points to res buff.

Bugs. There are five array indexing operations (Lines 37−41, 50). However, the
operation at the Line 39 could lead to an out-of-bounds write of buff, because
res buff gets tainted at Line 32 (via c buff). In turn, the index res buff[0]

can contain a value greater than the size of buff (i.e., 16). Likewise, the write

at Line 50 can lead to an out-of-bounds write of the buffer pointed by c buff

(i.e., q from Line 47). The remaining three indexing operations are safe.

3.2 Imprecision in vanilla static analysis

Consider an STT technique based on the SPT analysis that we presented in
Section 2 on our example in Listing 1.1. The call to read user data taints object
ids {3, 1, 4, 2} because of the points-to set of c buff@28. At Lines 37, 39, 40, 41,
and 50, we are using data from the tainted objects (i.e., {3, 1, 4, 2}) as indices
to write to arrays. Consequently, any static vulnerability detection technique
that relies only on the STT information, and checks for the use of tainted data
as an array index (unsafe operation) will raise a potential out-of-bounds alert.
However, as described in Section 3.1, only the buffer pointed to by res buff

6 Authors Suppressed Due to Excessive Length

contains tainted data. Therefore, only the warnings raised at Lines 39 and 50 are
true positives. Next, we show how we use dynamic information to improve the
precision of static analysis techniques to eliminate these false positives.

1 #define BSIZE 512
2 // g l o ba l ob ject , ID : 1
3 char greq [BSIZE] ;
4 // g l o ba l ob ject , ID : 2
5 char gre s [BSIZE] ;
6 char ∗ pro c e s s bu f (IOLevel r , char ∗ res , char ∗ req) {
7 switch (r) {
8 case IORECV:
9 . . .

10 return r e s ;
11 case IOSEND:
12 . . .
13 return req ;
14 }
15 return NULL;
16 }
17

18 int main (. . .) {
19 // stack object , ID : 3
20 char r e q bu f f [BSIZE] ;
21 // stack object , ID : 4
22 char r e s b u f f [BSIZE] ;
23 // stack object , ID : 5
24 char bu f f [1 6] ;
25 char ∗ c bu f f , ∗ t b u f f ;
26 . . .
27 // The return value w i l l be r e s b u f f
28 c bu f f = pro c e s s bu f (IORECV, r e s bu f f , r e q bu f f) ;
29 . . .
30 // Read user (ta in ted) data into the bu f f e r
31 // pointed to by c bu f f , i . e . , r e s b u f f
32 r ead us e r da ta (c bu f f , BSIZE) ;
33 . . .
34 // The return value w i l l be greq
35 c bu f f = pro c e s s bu f (IOSEND, gres , greq) ;
36 . . .
37 bu f f [r e q bu f f [0]] = 'R ' ;
38 // BUG: Potent ia l out of bounds wri te
39 bu f f [r e s b u f f [0]] = 'S ' ;
40 bu f f [greq [0]] = ' r ' ;
41 bu f f [g r e s [0]] = ' s ' ;
42 . . .
43 i f (. . .) {
44 // heap object , ID : 6
45 char ∗q = getenv (. . .) ;
46 t b u f f = c bu f f ; // c bu f f po ints to greq here
47 c bu f f = q ;
48 . . .
49 // BUG: Potent ia l out of bounds wri te
50 c bu f f [r e s b u f f [0]] = ' I ' ;
51 . . .
52 }
53 . . .
54 return 0 ;
55 }

Listing 1.1: Example program to demonstrate the effectiveness of hybrid pruning. The
region highlighted in red is never executed in any of the dynamic runs.

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 7

Objects Tainted data?
(Ground Truth)

Static Taint Tracking (STT)
ID Name Flow-Sens PT HP-PT Ho-PT

1 greq 7 3 7 7
2 gres 7 3 7 7
3 req buff 7 3 7 7
4 res buff 3 3 3 3
5 buff 7 7 7 7
6 q 7 7 7 7

Table 1: Tainted objects (3: Tainted, 7: not Tainted)
when different points-to analysis techniques are used.
The colors green and red represent true positives, and
false positives respectively.

Vulnerability Warnings
(Ground Truth)

Static Taint Tracking (STT)
Flow-Sens PT HP-PT Ho-PT

Out-of-bounds write on Line 39 1 1 1
Out-of-bounds write on Line 50 1 0 1

False positives 3 0 0

Total warnings 5 1 2

Table 2: Vulnerability warnings of static taint track-
ing when different points-to analysis techniques are used.
The color green represents true positives, and red rep-
resents false positives and false negatives respectively.

Pointer Dynamic points-to

q N/A
buff {5}

req buff {3}
greq {1}

res buff {4}
gres {2}
req {1,3}
res {2,4}

return {3,1,4,2}
c buff@28 {4}
c buff@35 {2}
c buff@47 N/A

Table 3: Dynamic
points-to information
collected for the exam-
ple in Listing 1.1. N/A
indicates that the code
corresponding to the
pointer is not executed in
any of the dynamic runs.

3.3 Precision gain due to hybrid pruning

First, we exercise the program either using tests, or by fuzzing, to collect dynamic
points-to and taint facts. Then, we augment the static pointer and taint analysis
techniques with the recorded dynamic facts in either of the following two ways
– propagation-only (HP), or opportunistic (Ho).

Propagation-only (HP). In this mode, the static analysis is first initialized
with the recorded dynamic facts. Then, the static pointer and taint analysis
algorithms propagate those dynamic facts even to those program points that
are not executed dynamically. In other words, the information generated at any
program point is derived only from the dynamic information, but propagated
by the static analysis rules. The benefit of the HP over dynamic-only analysis is
that the former compensates for the lack of dynamic information by static prop-
agation of dynamic facts, at the program points where the dynamic information
is absent. Greater the dynamic coverage is, more effective the HP mode will be in
eliminating the spurious points-to and taint sets. The HP hybrid pruning strategy,
when applied to static points-to (SPT) and static taint-tracking (STT) analyses,
yields HP-PT (propagation-only points-to) and HP-TT (propagation-only taint-
tracking) analyses, respectively.

In Listing 1.1, HP-PT prunes the over-approximated SPT set of c buff@28

from {3, 1, 4, 2} to {4}. Consequently, an STT that relies on HP-PT correctly
taints only the object with id 4 (res buff), thus improving the precision of
the taint analysis, as shown in Table 1 (Column HP-PT). Furthermore, as shown
in Table 2 (Column HP-PT), a static vulnerability detection technique that uses
this hybrid taint-tracking emits no false warnings. However, for cases where dy-
namic information is inadequate, e.g., the points-to information of c buff@47 is

8 Authors Suppressed Due to Excessive Length

absent, the HP mode might fail to compute certain information. The missing in-
formation might introduce false negatives, as shown in Table 2 (Column HP-PT),
where using HP-PT resulted in missing the vulnerability in Line 50 of Listing 1.1.

I Difference between HP and classic dynamic analysis. Since HP mode propagates
dynamic facts using static algorithms, it essentially compensates for the ‘lost’
information at certain program points. In Listing 1.1, a purely dynamic approach
would compute an empty points-to set for t buff@46, because Line 46 was never
executed in any of the dynamic runs. However, Line 35 was dynamically executed,
which made c buff@35 point to greq. That information will be propagated in
HP mode, resulting in t buff@46 correctly pointing to the greq buffer.

Opportunistic (Ho). As explained above, the points-to and taint information
that the HP mode propagates might be incomplete due to lack of dynamic cov-
erage at certain program points – resulting in false negatives. To alleviate this
issue, we use the dynamic information in the Ho mode only at those program
points that are executed dynamically. For all other program points, we use the
static information. Opportunistic use of the dynamic facts conservatively pre-
serves the static points-to and taint sets at those program points where the
dynamic information is not available. The only difference between the Ho and
the HP modes is that the Ho allows static information to be generated, while
the HP does not. The Ho hybrid pruning strategy, when applied to static points-
to (SPT) and static taint-tracking (STT) analyses, yields Ho-PT (opportunistic
points-to) and Ho-TT (opportunistic taint-tracking) analyses, respectively.

In Listing 1.1, though the code highlighted in red is not dynamically executed,
Ho-PT infers the points-to relation between c buff@47 and object with id 6.
Consequently, an STT that relies on Ho-PT correctly taints the relevant buffer,
as shown in Table 1 (Column Ho-PT). Furthermore, as shown in Table 2 (Column
Ho-PT), a static vulnerability detection technique that uses this hybrid taint-
tracking emits no false warnings, yet discovers both the vulnerabilities.

4 Hybrid Pruning

Our technique works in three steps. First, we generate the dynamic facts (Section 4.1),
e.g., points-to and taint sets, by exercising the program with a test suite, or us-
ing fuzzing. In the next phase, which we call domain re-mapping (Section 4.2),
we lift the dynamic facts to the same domain as that of the static ones, so that a
unified analysis becomes possible. Finally, we run the static analysis, and inject
(Section 4.3) the dynamic facts, wherever available, thus eliminating potentially
spurious points-to and taint sets at those program points. Note that the preci-
sion improvement is not only local to the point of injection, but also carried
forward to the downstream analysis sites by the static algorithms. For example,
“fixing” an over-approximated points-to set progressively taints fewer objects
further down the analysis. Finally, we run a number of vulnerability detectors
(Section 4.4), which uses the hybrid facts to eliminate spurious warnings.

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 9

4.1 Generation of dynamic facts

During a program’s execution, we record (i) the allocation and deallocation of
program objects, (ii) the read and write accesses on those objects, (iii) the
callsite-based program context of the instructions involved in (i) and (ii), and
(iv) the arguments of the input API, e.g., read. Once this information is col-
lected, we compute the dynamic points-to and taint information corresponding
to those memory objects from the recorded trace. Next, we describe how we
recover the dynamic facts from the collected trace in detail.

Dynamic context. We keep track of a function’s call-stack c at run-time, by
emulating a parallel stack updated at every call and ret instruction. For every
instruction I, we compute its dynamic context ∆(I) = (c, τ), where c is the
call-stack with which I is executed, and τ is an unique identifier for each I.

Memory objects. We maintain the tuple (sz, rt,∆(I)) for each memory object
o allocated, or deallocated by an instruction I, where sz is the size of the object
(in bytes), rt is its run-time address, and ∆(I) being its dynamic context. We
extract the size sz of the local and global memory objects from their types.
The size of the heap object is extracted from the size argument passed to the
allocation routines, e.g., malloc. Note that, different instances of an object o
with the same context ∆(I) might get created at different points in time in
an execution, or even across different executions. We merge the dynamic facts
associated with all those instances of an object o, by its context ∆(I), at the end
of trace collection. For each object o created by the same instruction I with the
same context ∆(I), we compute its id π(o) = {hash(∆(I), τ(I))}, which uniquely
identifies the object for a given context.

Points-to facts. To compute the points-to sets, we track all the write operations
to the program objects. Assume, a memory write instruction writes to the
address wd of a memory object od = (szd, rtd,). If the value being written to
is a memory address ws of an object os = (szs, rts,), then we make the offset
(wd−rtd) of the object od point to the offset (ws−rts) of the object os. Formally,
the updated points-to set ρ(od, wd − rtd) = ρ(od, wd − rtd) ∪ (π(os), ws − rts).
Taint facts. We use the same taint sources as that of static taint analysis.
However, different from the static case, dynamically we taint the exact number
of bytes read by an input API, e.g., a read(fd, buf, count) call taints count
bytes of the buffer buf.

4.2 Domain re-mapping

Hybrid pruning seeds static analysis algorithms with the dynamic information.
Static analysis operates on an intermediate representation (IR), and models pro-
gram memory in terms of abstract objects. However, dynamic analysis executes
native CPU instructions, and objects are created at run-time on the program
stack, or heap. We use the following two-fold approach to bridge this gap. First,
we assign a unique instruction id τ to each IR instruction. Additionally, to rep-
resent a memory object, we use a unique object id π as discussed earlier. We
include both the τ and π in the dynamic events, and the generated dynamic

10 Authors Suppressed Due to Excessive Length

facts. During the static analysis, we re-use the same τ as that of the dynamic
analysis, and use identical definition of static context as that of dynamic context
∆(I). Hence, the static and dynamic object id π evaluates to be the same, for the
same object, created in the same context. The hybrid pruning leverages this fact
to establish the equivalence between a dynamic memory object, and its static
counterpart.

4.3 Injection of dynamic facts

We augment both the static pointer and taint analyses with the dynamic in-
formation to achieve hybrid pruning . For the pointer analysis, we leverage the
flow-sensitive analysis from SVF [45]. Our static taint analysis engine is flow-,
context-, and field-sensitive. In addition to the family of input APIs, e.g., scanf,
gets, etc., we consider the command-line arguments of the program as the taint
sources. The taint analysis is parameterized by the underlying pointer analysis,
i.e., while propagating the taint labels, it queries the pointer analysis for the
points-to sets of the destination operand of an instruction. Taint sinks are deter-
mined by the taint policies of the respective vulnerability detectors. Depending
on how we inject dynamic facts during static analysis, we develop two modes of
hybrid pruning – propagation-only and opportunistic.

PtsTo(p) ⊇ PtsTo(q) dynV (q) lx ∈ DynPtsTo(q)

lx ∈ PtsTo(p)
DynCopy

PtsTo(p) ⊇ PtsTo(q) ¬dynV (q) lx ∈ PtsTo(q)

lx ∈ PtsTo(p)
ICopy

PtsTo(p) ⊇ PtsTo(∗q) lr ∈ PtsTo(q) dynV (r) lx ∈ DynPtsTo(r)

lx ∈ PtsTo(p)
DynDereference

PtsTo(p) ⊇ PtsTo(∗q) lr ∈ PtsTo(q) ¬dynV (r) lx ∈ PtsTo(r)

lx ∈ PtsTo(p)
IDereference

Fig. 3: Rules to solve the hybrid constraint graph.

Propagation-only (HP). In this case, we propagate just the dynamic facts us-
ing static analysis rules. For the SPT we presented in Section 2, we can achieve
HP hybrid pruning by (i) not generating any Address-Of constraints, and (ii)
modifying the Copy and Dereference constraints to consider only the dy-
namic information. While (i) prevents generation of any new static fact, (ii)
ensures propagation of dynamic facts following the SPT rules. We split the
constraint-solving rules in Figure 2 depending on the availability of the dynamic
information. Specifically, we follow the DynCopy and DynDereference rules
as shown in Figure 3, to process the Copy and Dereference instructions in
the HP mode. The dynV (p) predicate checks whether the program point corre-
sponding to the pointer p has been dynamically executed. If so, we consider the
dynamic points-to set returned by the DynPtsTo(p) predicate. In the HP mode
of STT, we ignore all the static taint sources. We use just the dynamic taint
information for all the dynamically executed instructions. In effect, we consider
only those instructions that have been both dynamically executed, and found to
be tainted. Due to the space constraint, we refrain from presenting the modified
transfer functions for the taint propagation.

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 11

Opportunistic (Ho). In this case, we generate new static facts, if dynamic
information is unavailable. If the later is available at a program point, it is given
priority over its static counterpart. For the SPT we presented in Section 2, we can
achieve the Ho hybrid pruning by (i) generating the Address-Of constraints,
and (ii) modifying the Copy and Dereference constraints to give preference
to dynamic information, if available. Otherwise, the constraint solving rules are
made to use static information. Policy (i) ensures the generation of new static
facts, which compensates for the lack of dynamic coverage. In fact, if the dynamic
information is available, we use the same constraint-solving rules as in the case
of the HP mode, while processing the Copy and Dereference instructions.
However, we also introduce two new rules, viz., ICopy and IDereference as
shown in Figure 3, to deal with those cases when dynamic information is absent.
The Ho strategy falls back to SPT in that case. In the Ho mode of STT, we enable
the static taint sources. Also, we propagate the static taint except when the
dynamic information is available at an instruction, it is given priority. In other
words, the taint engine never taints an instruction that has been dynamically
executed, yet was never tainted.

4.4 Vulnerability detection

The vulnerability detectors use the taint information to detect potentially buggy
program points. Since, the taint analysis itself is a client of the pointer analysis,
the checkers run when both the pointer and taint analyses are over. In our re-
search prototype, we only use detectors capable of finding spatial vulnerabilities,
e.g., buffer overflow, out of bounds, etc. Temporal bugs, e.g., use after free, dou-
ble free, etc., are considered out of scope. Specifically, we use the taint-based bug
detectors, i.e., Improper Tainted-Data Use Detector (ITDUD), and Tainted Loop
Bound Detector (TLBD) from the Dr. Checker [29] project. ITDUD monitors
whether tainted data is used in risky functions e.g., strcpy, memcpy, etc. Where
as, TLBD checks if the loop bound can possibly be tainted.

4.5 Implementation

To generate the dynamic facts, we instrument the program using LLVM 7.0 [5].
The static and hybrid analysis engines are based on SVF 7.0 [45]. We extended
SVF to add support for taint analysis, while using its pointer analysis (fspta) out-
of-the-box. We use the DataFlowSanitizer [6] (DFSan), a generic dynamic data
flow analysis LLVM pass, which instruments the program to perform dynamic taint
tracking. The DFSan also handles memory taint by maintaining a shadow memory
[37]. Our analysis injects and propagates taint automatically, and collects all the
tainted instructions and memory objects. The vulnerability checkers are adapted
from the Dr. Checker [29].

12 Authors Suppressed Due to Excessive Length

5 Evaluation

We evaluate the effectiveness of our approach in a downstream security appli-
cation, e.g., vulnerability detection. We show that using our hybrid points-to
and taint analysis we generate fewer false-positives (warnings that are not real
bugs), while still detecting real bugs.

5.1 Evaluation setup

Dataset Our approach was evaluated on the following two datasets.

CGC. The corpus of 246 programs [13] used by DARPA in the Cyber Grand
Challenge (CGC) [4]. We chose to use cb-multios [33], a port of the CGC chal-
lenge set to Linux x86 by Trail of Bits. cb-multios project failed to port five
programs to Linux. Moreover, the programs are meant to be compiled in 32-bit,
while our DFSan based implementation generates only 64-bit binaries owing to
the limitation imposed by the shadow memory mechanism. Due to unsupported
architecture, 89 programs aborted with an early memory corruption inside the
custom heap allocator. From the remaining ones, we randomly sampled 12 pro-
grams containing spatial vulnerabilities to include in our dataset.
Real-world. Though CGC programs mimic real-world applications both in terms
of complexity and functionality, we collected 8 vulnerable versions (Table 4) of 4
distinct real-world GNU applications containing only spatial vulnerabilities from
the CVE database [2]. We used the test suites available with the respective versions
of those utilities to exercise those programs.

Instrumentation. This step was carried out on an Ubuntu 18.04.3 LTS, 64-
bit system equipped with an Intel Core i7-4770 (3.40GHz) CPU, and 32GB of
memory, under moderate workload.

Trace collection. We re-used the same setup from the previous phase. The
programs were exercised by their respective test suite. Real-world applications
were let to run until they gracefully exit. However, many CGC programs being
interactive, and menu-driven in nature, they run in a waiting loop until a specific
program option is chosen, e.g., sending a QUIT command. It is not guaranteed
that the test cases will drive the programs to completion. To ensure the conver-
gence of the experiment, we imposed a hard time-limit of 15 seconds per program
execution by sending a SIGTERM signal, and installed signal handlers to record
traces at termination.

Hybrid analysis. We deployed this analysis to a Celery [1] cluster consisting of
8 servers with an analysis time-limit of 6 hours per program, per configuration.
Each server was equipped with an Intel Xeon E5645 2.40GHz CPU, and 96GB
of memory, running Ubuntu 16.04.6 LTS, 64-bit. Despite the time-limit in place,
none of the analyses was observed to hit the limit.

5.2 Vulnerability detection

We measured the effectiveness of our pruning strategy in terms of the reduction of
warnings due to the following two reasons—(i) We were interested to understand

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 13

if our technique is able to significantly bring down the number of warnings emit-
ted by a static bug detector such that those alarms can be verified by the analysts
manually. (ii) We had the partial knowledge of the vulnerabilities (ground truth)
present in our dataset. In other words, we did not have the knowledge of all the
bugs contained in our subjects. Both the sources of building the ground truth—
the bugs documented with the CGC dataset, and the CVE database records for
the vulnerable real-world programs—were incomplete. Therefore, we could only
confidently determine the true positives for bugs by associating the warnings to
our known bugs. However, a similar strategy would incorrectly flag a warning,
which is indeed a bug, as a false positive just because the associated bug report
is not present in our (incomplete) ground truth. Establishing a complete ground
truth would not only require the involvement of human experts, but also would
be hard to scale to all the programs included in our dataset.

Warning Reduction Factor (WRF). To measure the effectiveness of hybrid
pruning , we introduce the notion of warning reduction factor (WRF), a metric
that captures the effect of hybrid pruning on emitted warnings, w.r.t. the baseline
static vulnerability detection technique. An WRF = 0%, the worst-case scenario
for our technique, corresponds to no improvement due to hybrid pruning over
the static analysis. A non-zero WRF quantifies the improvement in performance
induced by hybrid pruning. We define WRF as the fraction of warnings that are
not raised by our hybrid (Ho/HP) analysis. Formally, WRF = (|ωB| − |ωH|)/|ωB|,
where |ωB| and |ωH| denote the number of warnings reported by the baseline
and the hybrid analyses respectively.

bc ft ks

CR
O

M
U

_0
00

26

CR
O

M
U

_0
00

27

CR
O

M
U

_0
00

29

CR
O

M
U

_0
00

30

CR
O

M
U

_0
00

76

CR
O

M
U

_0
00

84

CR
O

M
U

_0
00

88

KP
RC

A_
00

00
1

N
RF

IN
_0

00
33

N
RF

IN
_0

00
41

TN
ET

S_
00

00
2

YA
N

01
_0

00
11

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

W
ar

n
in

g
re

d
u

ct
io

n
 fa

ct
or

0.
12

0.
36

0.
28

0.
20

0.
30

0.
15

0.
31

0.
27

0.
34

0.
32

0.
22

0.
17

0.
27

0.
21

0.
09

0.
23

0.
36

0.
32

0.
36

0.
30 0.

32

0.
51

0.
56

0.
44

0.
39

0.
50

0.
46

0.
27

0.
24

0.
09

Opportunistic Propagation-only

(a) Warning reduction by hybrid pruning
compared to baseline analysis

0 20 40 60 80 100
Trace count

0.00

0.05

0.10

0.15

0.20

0.25

0.30

W
ar

n
in

g
re

d
u

ct
io

n
 fa

ct
or

YAN01_0011 grep readelf

(b) Warning reduction with dynamic trace

Fig. 4: Analysis of warning reductions

Results and analysis. In this experiment, we ran the bug detectors (Sec-
tion 4.4) in three different configurations: (A) static-only : flow-sensitive static
points-to + static taint (B) Ho-only : flow-sensitive Ho points-to + Ho taint, and
(C) HP-only : flow-sensitive HP points-to + HP taint. To demonstrate the reduc-
tion in the warnings, we evaluated our approach on the CGC [13] dataset. The

14 Authors Suppressed Due to Excessive Length
Subject

Warnings

Static Ho
Bug

Found?
HP

Bug
Found?

CROMU 00026 249 199 3 158 7
CROMU 00027 141 99 3 98 3
CROMU 00029 261 223 3 177 7
CROMU 00030 305 210 3 148 3
CROMU 00076 321 233 3 141 7
CROMU 00084 700 459 3 389 3
CROMU 00088 528 357 3 320 3
KPRCA 00001 209 163 3 105 3
NRFIN 00033 93 77 3 51 3
NRFIN 00041 268 196 3 196 3
TNETS 00002 33 26 3 25 3
YAN01 00011 32 29 3 29 3

readelf-2.28
(CVE-2017-6969)

2255 1872 3 999 7

readelf-2.28
(CVE-2017-8398)

2255 1872 3 999 3

readelf-2.30
(CVE-2018-10372)

3038 2582 3 1231 3

readelf-2.32
(CVE-2019-14444)

3061 2663 3 1176 3

readelf-c0e331c
(CVE-2017-15996)

2369 2037 7 996 7

date-15fca2a
(CVE-2014-9471)

581 238 3 192 3

locate-4.2.30
(CVE-2007-2452)

1038 571 3 343 3

grep-235aad7
(CVE-2012-5667)

539 426 3 270 3

Table 4: Warnings emitted, and corresponding bugs (true positives) discovered
by bug finders based on pure static, Ho, and HP modes of points-to and taint
analyses. 3 and 7 denote if the bug has been found or missed by an analysis.

static-only configuration, which emits the most number of warnings, serves as
the baseline for this experiment. Figure 4a shows the reduction in the number
of warnings when Ho-only and HP-only analyses are used. Further we observe
that the WRF increases as the size (lines of code), and the complexity (e.g.,
pointer-heavy programs), the number of taint sources, or the dynamic coverage
increases. Intuitively, the first three factors make the analysis harder for a static
bug detector, thus generating larger number of spurious warnings. The fourth
factor, i.e., the dynamic coverage, indeed benefits the hybrid analysis, as we
show in Section 5.3. The Ho-only configuration reduces the warnings up to 36%
(WRF=0.36), while the reduction in the HP-only configuration is higher, up to
56% (WRF=0.56). We argue that this is no worse than any dynamic-only analysis
system (e.g., fuzzing) which suffers from insufficient coverage. HP-only mode is
helpful only when we have high confidence in the completeness of the dynamic
information, e.g., the test suite is exhaustive, providing good coverage. If the
dynamic coverage is lacking, Ho-only mode is preferred.

This study reinforces the trade-off [51] between usability and soundness. We
envision our bug detection system to be used in practice in either of these two
modes: (a) Conservative: When an analyst chooses to minimize the likelihood
of missing bugs, but is ready to tolerate a reduced reduction in the warnings; Ho-
only mode is helpful. (b) Priority: When an analyst prioritizes finding the most

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 15

number of bugs in a small time window, thus requiring a significant reduction
in spurious warnings; HP-only mode is a perfect fit.

While cutting down the number of warnings is desirable, it is not sufficient
because of the potential risk of missing the true bugs. To evaluate the impact of
hybrid pruning on the bug detection capability of the static bug detectors, we ran
the same on both the CGC [13] and the real-world datasets. Table 4 summarizes
the bugs discovered by the bug detectors while running in the HP-only and Ho-
only configurations. While the former is found to miss five bugs, the later misses
just one bug. Intuitively, though insufficient dynamic coverage exhibits greater
warning reduction in the HP-mode, it misses more bugs than the Ho-mode, which
compensates for the lack of dynamic coverage, by design. Please note that, even
Ho-mode can also miss true bugs in some cases. We discuss that in Section 6.

Hence, we show that hybrid pruning enable scalable and efficient bug triaging
by cutting down on false alarms while retaining comparable true-positive rate.

5.3 Effect of dynamic trace

An important aspect to consider is how the quantity of dynamic information
available affects the overall performance of hybrid pruning. We conducted this
experiment on three subjects, i.e., YAN01 00011, grep and readelf in Homode;
where we gradually inject more dynamic traces into our analysis system. We use
fuzzing as an inexpensive way of trace generation, and randomly pick 100 traces.
Every time a new trace is introduced, we continuously monitor the performance
of our analysis system in terms of warning (WRF) reductions. With more traces
being made available, pointer analysis improves, as additional dynamic infor-
mation yields new points-to sets not discovered before. Moreover, taint analysis
improves due to the combined improvement in the points-to sets, as well as the
reduction in the spurious static taint sets. Since the bug detectors consume both
the pointer and the taint information, the number of warnings reduces over time.
Initially, the WRF increases, and then becomes stable at the point when the dy-
namic coverage saturates. We observe that the performance of hybrid pruning is
positively correlated with the amount and the quality (coverage) of the dynamic
trace. We present in Figure 4b. Specifically, for every subject, the corresponding
line gradient in Figure 4b represents the correlation of WRF with the trace count,
e.g., gradient increases mean WRF increases as we add more traces.

Gradient increases. Points-to result improves when additional dynamic infor-
mation yields new points-to sets that has dynamically never been seen before
by the analysis. Also, taint can improve either due to more precise points-to
sets, or additional dynamic taint information overriding its static counterpart
at newer program points. Warning improves as it is positively correlated to the
improvement of either or both the factors.

Gradient unchanged. Neither points-to, nor taint improves. Typically, it is
the case when multiple traces exercise the same program path.

Gradient decreases. Increased dynamic information can discover more target
objects pointed to by the same pointer; thereby increasing the size of its points-

16 Authors Suppressed Due to Excessive Length

to set. Similarly, extensive dynamic information available at the same program
point can newly taint an object which was found not to be tainted in prior runs.

6 Limitations and Discussion

Potential false negatives. Our pruning strategy is context-insensitive, mean-
ing that the different call contexts of the same callee method are indistinguishable
from each other.

1 void square (int ∗ p) {
2 ∗p = (∗p) ∗ (∗p) ; // Unsafe binary operation
3 }
4

5 int main () {
6 int n , c = 50 , i ;
7 s can f (”%d” , &i) ;
8 i f (i < 100) {
9 s can f (”%d” , &n) ; // Tainted input

10 square(&n) ;
11 } else
12 square(&c) ;
13 return 0 ;
14 }

Listing 1.2: False negative of hybrid pruning. Instructions in green are dynamically
executed while the red ones are not.

In Listing 1.2, square is being called from two different contexts at Line 10 and
Line 12, making p point to {n, c}. The tainted input n can flow to the multiplica-
tion operation at Line 2, if and only if i is less than 100. However, assume that the
program is exercised only with test cases having i greater than 100. Therefore,
in all the dynamic runs, the constant c is passed to the square call at Line 12,
which establishes the dynamic points-to relation p→ c. During hybrid pruning ,
when the algorithm evaluates the points-to set of p due to the call at Line 10, it
will find that the instructions of square have already been dynamically visited,
albeit from a different context (Line 12). The context-insensitive pruning strat-
egy disregards the difference in call-sites. At this point, the dynamic points-to
set will be given preference, and consequently the static points-to relation p→ n
gets killed. Due to the missing points-to relation, the taint engine will no longer
propagate the taint to the multiplication operation at Line 2. In turn, the ITDUD

vulnerability detector will fail to detect the potentially unsafe binary operation.
To summarize, the context-insensitive pruning strategy can lead to false nega-
tives in both the pointer and taint analyses, as well the vulnerability detection.
As we show in Section 5, the performance of hybrid pruning is positively corre-
lated with the quantity, and the quality (coverage) of the available dynamic trace.

Theoretical limitation. To detect temporal bugs, e.g., use-after-free (UAF),
double free, etc., a bug detector needs to have both the reachability (if the
attacker can trigger the events), and the timing (if the attacker can control the
sequence of events) information. Therefore, the taint information alone is not
enough in order to detect this kind of bugs. However, such a bug detector could
still benefit from the precise pointer information to infer if different events, e.g.,
use, free, etc., are operating on the same program objects. Hence, how the hybrid

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 17

points-to information improves the discovery of the temporal bugs could be an
interesting research direction to explore.

Applicability to other analyses. Since hybrid pruning is inherently unsound,
it is the best fit for applications where soundness is not a strict necessity, for
example, in static vulnerability detection, limited cases of call-graph and control-
flow graph construction, dynamic symbolic execution, etc. Indirect call resolution
is a challenging problem—a purely static pointer analysis is likely to miss po-
tential targets unless it is configured to be ‘overly’ conservative, in which case,
it may become unusable. Hybrid pruning can indeed be effective, because it can
restrict such a pointer to a smaller set of interesting targets.

7 Related Work

In this section we will discuss state-of-the-art techniques related to our work.
Pointer analysis: Pointer analysis is a fundamental program analysis technique
with a very rich literature [20,42–44], and wide applications [23,27]. Steensgaard
et. al. [44] provides a linear time algorithm based on type inference techniques for
pointer analysis. Anderson inclusion-based pointer analysis is another important
milestone for pointer analysis which provides good precision compared to Steens-
gaard et. al. with an acceptable performance overhead [43]. Yulei et. al.perform
value-flow, and pointer analysis in an iterative manner to improve the precision of
both [45]. Pointer analysis techniques are designed to be sound as they are mostly
used in compiler optimization. However, there are other clients of pointer analy-
sis that does not have this requirement. Vulnerability detection is one such client
where less false positives [8], and more precision is required. There are few un-
sound pointer analysis techniques tailored for bug detection [9,11,12]. Similarly,
speculative execution is one such client where the occasional lost of soundness is
acceptable [24]. In order to achieve precision, one can also use dynamic analysis
which is precise, but can never be sound. Marcus et. al.proposes a technique to
compute pointer analysis results dynamically, which are called dynamic points-to
results [19,32]. They also show that the static pointer analysis results are an order
of magnitude imprecise than dynamic points-to results. Another work shows how
the dynamic points-to results can be used for program slicing [31]. Additionally,
David et. al.integrates pointer analysis with Dynamic symbolic execution to in-
crease the precision of pointer analysis [46]. However, dynamic information heav-
ily relies on the tests, and can never be sound. In this work, we explore the pos-
sibility of augmenting the static pointer analysis—which is imprecise but sound
with dynamic points-to—which are precise but unsound. We then show how this
can be used to increase the precision of vulnerability detection techniques.
Taint analysis: Taint tracking is a data flow tracking technique to track the
effect of user data at various program points [36]. Static taint tracking [28]
requires a precise pointer analysis, else it usually ends up with Taint explo-
sion [41], tainting all program data. Consequently, almost all the static taint
tracking techniques are developed for Java [28] and other strongly typed lan-
guages where the pointer analysis results are relatively precise. Dynamic taint

18 Authors Suppressed Due to Excessive Length

tracking(DTT) [25, 36] is usually performed by instrumenting program instruc-
tions [25], resulting in memory and run-time overhead. Though several tech-
niques have been developed to improve the run-time overhead; it still suffers
from the lack of dynamic coverage [21,22,30,47].
Vulnerability detection. Nevertheless imprecise, the importance of static anal-
ysis in vulnerability detection is undeniable. A large body of work on the static
detection of vulnerabilities in C/C++ programs has evolved over the last two
decades. Engler et al.first explored this domain using various static analysis tech-
niques [17,50,52]. Other techniques target only specific classes of vulnerabilities,
such as, buffer overflows [16,18,53], memory leaks [49], integer anomalies [35,48],
and format string errors [38]. However, as the complexity of software grows, these
techniques either do not scale, or incur a large number of false positives.

The key motivation behind this work is to bring the best of both the worlds
together,i.e., the scalability offered by the static analysis, and the precision
guaranteed by the dynamic analysis. We attempt to combine both in a novel
way, such that, we can draw on the strengths of each. There exists previ-
ous attempts that combine static and dynamic analysis for various applica-
tions [7, 10, 14, 15, 26, 39, 40]. Tapti et. al.combines static analysis with dynamic
data flow tracking (DFT) to increase the the precision of pointer analysis [34].
They used this precise pointer analysis to protect memory disclosure, and tran-
sient execution attacks. Other techniques have aimed to improve vulnerability
detection as a downstream client, e.g., using dynamic analysis to verify the re-
sults of static analysis, guiding fuzzing through static program analysis, using
static analysis to localize program faults in untested code from fuzzer generated
crash, etc. [14,26,39,40]. However, none of them combine the static and dynamic
analysis in an interleaved way to improve the points-to, and taint analysis—
which is further used in vulnerability detection to reduce the false warnings. To
our knowledge, we are the first to explore this direction.

8 Conclusion

In this paper, we introduce hybrid pruning where we improve the precision of
static points-to and taint analyses by combining dynamic information collected
from program’s run-time trace in a novel way. We propose two different modes
of operation, viz., Ho and HP, whose applicability is decided by the amount of
dynamic information available. Our in-depth evaluation demonstrates both sig-
nificant improvement in the precision of the points-to sets, and the reduction
of the taint sets. When static vulnerability detection is used as a client of the
improved pointer and taint analyses, the former is able to find 19 out 20 bugs in
CGC and real-world software, where as cutting down 21% of the false warnings –
making the analysis outcome more amenable to manual triaging.

9 Acknowledgments

We thank our shepherd Daniele Cono D’Elia and anonymous reviewers for their
valuable feedback. This material is based upon work supported by ONR under
Award No. N00014-17-1-2897.

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 19

References

1. Celery: Distributed task queue. http://www.celeryproject.org.
2. Common vulnerabilities and exposures. https://cve.mitre.org.
3. Coverity linux scan. https://scan.coverity.com/projects/linux.
4. Darpa cyber grand challenge. https://www.darpa.mil/program/cyber-grand-

challenge.
5. The llvm compiler infrastructure. https://llvm.org.
6. Llvm dataflowsanitizer pass. https://clang.llvm.org/docs/

DataFlowSanitizer.html.
7. Subarno Banerjee, David Devecsery, Peter Chen, and Satish Narayanasamy. Iodine:

Fast dynamic taint tracking using rollback-free optimistic hybrid analysis. 2019.
8. Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth Hallem, Charles

Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson Engler. A few billion lines
of code later: Using static analysis to find bugs in the real world. Commun. ACM,
pages 66–75, 2010.

9. Sebastian Biallas, Mads Chr Olesen, Franck Cassez, and Ralf Huuck. Ptrtracker:
Pragmatic pointer analysis. In Source Code Analysis and Manipulation (SCAM),
2013 IEEE 13th International Working Conference on, pages 69–73. IEEE, 2013.

10. Pietro Borrello, Daniele Cono D’Elia, Leonardo Querzoni, and Cristiano Giuffrida.
Constantine: Automatic side-channel resistance using efficient control and data
flow linearization. In CCS’ 21, 2021.

11. Marcio Buss, Daniel Brand, Vugranam Sreedhar, and Stephen A. Edwards. A
novel analysis space for pointer analysis and its application for bug finding. Sci.
Comput. Program., pages 921–942, 2010.

12. Marcio Buss, Stephen A Edwards, Bin Yao, and Daniel Waddington. Pointer
analysis for c programs through ast traversal. 2005.

13. Brian Caswell. Cyber grand challenge corpus.
14. Christoph Csallner, Yannis Smaragdakis, and Tao Xie. Dsd-crasher: A hybrid

analysis tool for bug finding. ACM Transactions on Software Engineering and
Methodology (TOSEM), 17(2):8, 2008.

15. David Devecsery, Peter M. Chen, Jason Flinn, and Satish Narayanasamy. Opti-
mistic hybrid analysis: Accelerating dynamic analysis through predicated static
analysis. 2018.

16. Nurit Dor, Michael Rodeh, and Mooly Sagiv. Cssv: Towards a realistic tool for
statically detecting all buffer overflows in c. In Proceedings of the ACM SIGPLAN
2003 Conference on Programming Language Design and Implementation, PLDI
’03, pages 155–167, New York, NY, USA, 2003. ACM.

17. Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems code. In
Proceedings of the Eighteenth ACM Symposium on Operating Systems Principles,
2001.

18. Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David Vitek.
Buffer overrun detection using linear programming and static analysis. In Pro-
ceedings of the 10th ACM Conference on Computer and Communications Security,
CCS ’03, pages 345–354, New York, NY, USA, 2003. ACM.

19. Axel Gross. Evaluation of dynamic points-to analysis. 2004.
20. Ben Hardekopf, Ben Wiedermann, William R Cook, and Calvin Lin. A formal

specification of pointer analysis approximations. In submission to Programming
Language Design and Implementation (PLDI), 2009.

20 Authors Suppressed Due to Excessive Length

21. Alex Ho, Michael Fetterman, Christopher Clark, Andrew Warfield, and Steven
Hand. Practical taint-based protection using demand emulation. In ACM SIGOPS
Operating Systems Review, volume 40, pages 29–41. ACM, 2006.

22. Kangkook Jee, Vasileios P Kemerlis, Angelos D Keromytis, and Georgios Por-
tokalidis. Shadowreplica: efficient parallelization of dynamic data flow tracking. In
Proceedings of the 2013 ACM SIGSAC conference on Computer & communications
security, pages 235–246. ACM, 2013.

23. Vineet Kahlon. Bootstrapping: A technique for scalable flow and context-sensitive
pointer alias analysis. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 249–259, 2008.

24. Kirk Kelsey, Tongxin Bai, Chen Ding, and Chengliang Zhang. Fast track: A soft-
ware system for speculative program optimization. In Code Generation and Opti-
mization, 2009. CGO 2009. International Symposium on, 2009.

25. Vasileios P Kemerlis, Georgios Portokalidis, Kangkook Jee, and Angelos D
Keromytis. libdft: Practical dynamic data flow tracking for commodity systems.
In Acm Sigplan Notices, volume 47, pages 121–132. ACM, 2012.

26. Seokmo Kim, R. Young Chul Kim, and Young B. Park. Software vulnerability
detection methodology combined with static and dynamic analysis. Wireless Per-
sonal Communications, pages 777–793, 2016.

27. Ondrej Lhoták and Kwok-Chiang Andrew Chung. Points-to analysis with effi-
cient strong updates. In Proceedings of the 38th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 3–16, 2011.

28. Aravind Machiry. The need for extensible and configurable static taint tracking
for c/c++, 2017. https://machiry.github.io/blog/2017/05/31/static-taint-
tracking.

29. Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher Kruegel,
and Giovanni Vigna. DR. CHECKER: A soundy analysis for linux kernel drivers.
In 26th USENIX Security Symposium (USENIX Security 17), pages 1007–1024,
Vancouver, BC, 2017. USENIX Association.

30. Jiang Ming, Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu. Taintpipe:
Pipelined symbolic taint analysis. In USENIX Security Symposium, 2015.

31. Markus Mock, Darren C. Atkinson, Craig Chambers, and Susan J. Eggers. Im-
proving program slicing with dynamic points-to data. In Proceedings of the 10th
ACM SIGSOFT Symposium on Foundations of Software Engineering, SIGSOFT
’02/FSE-10, pages 71–80, 2002.

32. Markus Mock, Manuvir Das, Craig Chambers, and Susan J. Eggers. Dynamic
points-to sets: A comparison with static analyses and potential applications in pro-
gram understanding and optimization. In Proceedings of the 2001 ACM SIGPLAN-
SIGSOFT Workshop on Program Analysis for Software Tools and Engineering,
PASTE ’01, pages 66–72, 2001.

33. Trail of Bits. Darpa challenge binaries on linux, osx, and windows. https://

github.com/trailofbits/cb-multios, 2016.

34. Tapti Palit, Jarin Firose Moon, Fabian Monrose, and Michalis Polychronakis.
Dynpta: Combining static and dynamic analysis for practical selective data pro-
tection. In 2021 IEEE Symposium on Security and Privacy (SP), 2021.

35. Dipanwita Sarkar, Muthu Jagannathan, Jay Thiagarajan, and Ramanathan
Venkatapathy. Flow-insensitive static analysis for detecting integer anomalies in
programs. In Proceedings of the 25th conference on IASTED International Multi-
Conference: Software Engineering, pages 334–340. ACTA Press, 2007.

Hybrid Pruning: Towards Precise Pointer and Taint Analysis 21

36. Edward J. Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted
to know about dynamic taint analysis and forward symbolic execution (but might
have been afraid to ask). In Proceedings of the 2010 IEEE Symposium on Security
and Privacy, 2010.

37. Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry
Vyukov. Addresssanitizer: A fast address sanity checker. USENIX ATC, 2012.

38. Umesh Shankar, Kunal Talwar, Jeffrey S. Foster, and David Wagner. Detecting
format string vulnerabilities with type qualifiers. In Proceedings of the 10th Con-
ference on USENIX Security Symposium - Volume 10, SSYM’01, Berkeley, CA,
USA, 2001. USENIX Association.

39. Bhargava Shastry, Markus Leutner, Tobias Fiebig, Kashyap Thimmaraju, Fabian
Yamaguchi, Konrad Rieck, Stefan Schmid, Jean-Pierre Seifert, and Anja Feldmann.
Static program analysis as a fuzzing aid.

40. Bhargava Shastry, Federico Maggi, Fabian Yamaguchi, Konrad Rieck, and Jean-
Pierre Seifert. Static exploration of taint-style vulnerabilities found by fuzzing. In
11th USENIX Workshop on Offensive Technologies. USENIX Association, 2017.

41. Asia Slowinska and Herbert Bos. Pointless tainting?: evaluating the practicality of
pointer tainting. In Proceedings of the 4th ACM European conference on Computer
systems, pages 61–74. ACM, 2009.

42. Yannis Smaragdakis, George Balatsouras, et al. Pointer analysis. Foundations and
Trends in Programming Languages, 2(1):1–69, 2015.

43. Manu Sridharan and Stephen J. Fink. The complexity of andersen’s analysis in
practice. In Proceedings of the 16th International Symposium on Static Analysis,
2009.

44. Bjarne Steensgaard. Points-to analysis in almost linear time. In Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, 1996.

45. Yulei Sui and Jingling Xue. Svf: Interprocedural static value-flow analysis in llvm.
In Proceedings of the 25th International Conference on Compiler Construction,
2016.

46. David Trabish, Timotej Kapus, Noam Rinetzky, and Cristian Cadar. Past-sensitive
pointer analysis for symbolic execution. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, page 197–208, 2020.

47. Guru Venkataramani, Ioannis Doudalis, Yan Solihin, and Milos Prvulovic. Flex-
itaint: A programmable accelerator for dynamic taint propagation. In High Per-
formance Computer Architecture, 2008.

48. Xi Wang, Haogang Chen, Zhihao Jia, Nickolai Zeldovich, and M Frans Kaashoek.
Improving integer security for systems with kint. In OSDI, 2012.

49. Yichen Xie and Alex Aiken. Context-and path-sensitive memory leak detection.
In ACM SIGSOFT Software Engineering Notes. ACM, 2005.

50. Yichen Xie, Andy Chou, and Dawson Engler. Archer: Using symbolic, path-
sensitive analysis to detect memory access errors. In Proceedings of the 9th Eu-
ropean Software Engineering Conference Held Jointly with 11th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, ESEC/FSE-11,
2003.

51. Yichen Xie, Mayur Naik, Brian Hackett, and Alex Aiken. Soundness and its role in
bug detection systems. In Workshop on the Evaluation of Software Defect Detection
Tools, 2005.

22 Authors Suppressed Due to Excessive Length

52. Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Using
model checking to find serious file system errors. ACM Transactions on Computer
Systems (TOCS), 24(4):393–423, 2006.

53. Misha Zitser, Richard Lippmann, and Tim Leek. Testing static analysis tools using
exploitable buffer overflows from open source code. In ACM SIGSOFT Software
Engineering Notes, volume 29, pages 97–106. ACM, 2004.

