
An Identity Based Encryption Scheme
Resilient to RAM Scraper Like Malware Attacks

Dipanjan Das, Priyanka Bose, S. Sree Vivek,
S. Sharmila Deva Selvi, and C. Pandu Rangan

Theoretical Computer Science Laboratory,
Department of Computer Science and Engineering,

Indian Institute of Technology, Madras
Chennai, India.

{priyab,dipanjan,svivek,sharmila,rangan}@cse.iitm.ac.in

Abstract. Modern software ecosystem is data-centric. Data exfiltration due to the at-
tacks of Memory Scraper type malwares is an emerging threat. In this paper, we set up
an appropriate mathematical model capturing the threat such attacks pose to Identity
Based Cryptosystems (IBE). Following the formalism, we demonstrate an attack on pop-
ular Boneh-Franklin CCA2 secure IBE construction that compels us to relook the fact of
CCA2 being the de-facto standard of security. We offer two constructions, one identity
based and another public-key based (PKE) encryption schemes capable of withstand-
ing Ram Scraper attacks. Our design assumes a hybrid system equipped with a bare
minimal ‘Trusted Platform Module’ (TPM) that can only perform group exponentiation
operation. Building systems to implement our IBE/PKE protocols should be feasible as
well as efficient from practical standpoint.

Keywords: Glassbox Security Model, Identity Based Encryption, RAM Scraper, Trusted
Platform Module, Hybrid System, Malware

1 Introduction

Over the last decade, the notion of CCA2 security remained to be the highest standard
that can be achieved by an encryption algorithm. In this model of security, crucial
point is that the challenger offers to an adversary is the decryption of chosen ciphertext.
However, recent trend has shown the emergence of well-crafted and sophisticated attacks
which expose much more information to the adversary, e.g. certain number of bits of
secret key and intermediate values generated during the execution of cryptographic
algorithms.

In contrast to traditional cryptanalysis that views the cryptosystem as a ‘black’
box accepting input and producing output; side channel attacks peeps into the same
box to retrieve the secret key which the decryption process is parameterized on. Side
channel cryptanalysis targets the implementation aspects rather than the algorithm
itself to aid in key-recovery. In [18], Yarom et al. have demonstrated how they could
mount a Flush+Reload attack by exploiting a weakness in Intel x86 processors to
recover 96.7% of the bits of the secret key of a victim program running GnuPG v1.4.13
by observing a single signature or decryption round. Leakage resilient cryptography is
concerned with modeling this kind of threat.

One immediate solution that crosses our mind to tackle the issue above is to keep the
secret key safeguarded inside a tamper resistant hardware module. Intuitively, it might
seem to be a plausible solution to the problem at hand, but Ram Scrapers have taken
the threat one-step further. It is a piece of data-harvesting malware [8] that collects
data from volatile memory. Rather than taking a whole memory snapshot, those often
use stealthy techniques, such as, hooking into a payment processing application and
selectively dumping data that matches certain patterns, e.g. the regular expression of
a credit card format from a specific memory region. Ever since VISA alerted us [9] to
Ram Scrapers back in 2008, point-of-sale (PoS) terminals have become a ‘juicy’ attack
vector for such malwares [Fig.1]. Though encryption protects data during ‘transit’ or at
‘rest’, Ram Scraper exposes data to prying eyes during ‘processing’ while those stay
in unencrypted state in system memory. It becomes even severe when the intermediate
values are leaked in the course of an execution of a cryptographic algorithm enabling an
attacker successfully decrypt ciphertexts encrypted in the past. [Sec.5.2] demonstrates
one such attack against a CCA2 [Sec.4.5] secure IBE [Sec.4.4] by taking into account
the extra amount of information an adversary would obtain from memory scraping. We
prefer to call this enhanced model of security as ‘Glassbox for IBE’ [Sec.4.5]. In our
theoretical framework, the adversary, that mimics the behavior of a Ram Scraper, is
armed with a Glassbox decryption oracle OGB-ID which provides those additional values
during simulation.

In order to circumvent such sophisticated attacks, cryptographic algorithms are often
deployed to a ‘Hybrid System’ [Fig.2] having a tamper-resistant ‘Trusted Platform Mod-
ule’ (TPM) installed. A TPM is a system component that has state separate from the
system on which it reports (the host system). In [16], Trusted Computing Group (TCG)
has defined TPM v2.0 to be equipped with asymmetric engine(s), symmetric engine(s),
hash engine(s), random number generator, execution engine(s), management, autho-
rization, key generation and power detection modules - all connected to a single data
communication path. Operations supported by cryptographic subsystem includes hash
computation, asymmetric and symmetric encryption/decryption, signing/verification
and key generation. TPM has become so popular a piece of device for trusted com-
puting that newer versions of latest motherboards support dedicated slots for TPM to
be plugged in. BitLocker drive encryption [12], a new security feature that ships with
latest versions of Windows operating system, uses the TPM to lock the encryption keys
that protect the data. As a result, the keys cannot be accessed until the TPM has veri-
fied the state of the computer. Because the keys needed to decrypt data remain locked
by the TPM, an attacker cannot read the data just by removing the hard disk and
installing it in another computer. Secret key or its components are safeguarded inside
TPM and the values computed in it are not available to the attacker. However, TPMs
have very limited memory and processing power. Hence, we assume that our protocol
is partly executed in TPM and the rest of the steps in insecure computing environ-
ment. We assume the existence of a minimal TPM to run our protocol. To be precise,
only requirement for the TPM is to be able to perform group exponentiation. However,
looking into future one might argue that efficient implementation of specifications like
TinyPBC [1] can make embedded processors perform pairing, but it should never be

Fig. 1. PoS Ram Scraper family tree. © 2011 Trend Micro Incorpo-
rated. All Rights Reserved.

Fig. 2. Interface among
Processor, RAM and
TPM in a Hybrid System

forgot that pairing is inherently a costly computation. Our design goal was to come up
with a simplistic protocol not needing any specialized support for any mathematical
routine, e.g elliptic curve operations. Therefore, we have employed a clever tweak to
reduce the requirements on a TPM and pushing pairing in RAM, thus offloading the
TPM.

In [17], Vivek et al. discusses such a system as above, but in PKI setting. IBE
inherently relieves the user from the hassle of certificate management in PKI system. In
this paper, we re-examine IBE schemes to offer a Glassbox-proof construction addressing
the threats posed by Memory Scraper type malwares.

2 Related Works

The emergence of side channel attacks have lead us to designing completely novel secure
cryptographic systems. In [2], Akavia et al. extended the security model by designing
schemes against freezing attacks where the adversary can gather significant amount of
information about secret key from a part of memory that can be accessed even if the
power is off. The leakage resilient cryptography has also played a very important role in
designing secure protocols [10][3][11]. It should be noted that though the above schemes
are designed mainly for key leakage resilience, the effect of Ram/Memory Scrapers
to all these systems can be disastrous. The idea of such kind of attacks first appeared
in [14]. Here the authors have proposed a new security model (seCK) for authenticated
key agreement and talks about Memory Scrapers which can grab information from
volatile memory except those in tamper resilient device. In [17], Vivek et al. introduced
first PKE scheme provably secure both in standard and random oracle models against
Memory Scrapers. But, formalizing such a notion for IBE has not been explored till
date.

3 Our Contribution

Our contribution is two-fold. In this paper, we have provided a theoretical framework
for the real-world attacks launched by Memory Scraper like malwares. Modeling and
analysis of similar threats have already been researched in the domains of key-exchange
and public-key cryptosystem [17], but our paper extends and introduces that concept
for identity based system for the first time. We call our security notion as “Adaptive
Chosen Ciphertext Attack Security with Glassbox Decryption for Identity Based Cryp-
tosystems” (GB-ID). Also we illustrate the relevance of our security model by demon-
strating the vulnerability in Boneh-Franklin CCA2 secure IBE scheme [5]. It emphasizes
our claim IND-ID-GB security to be a stronger requirement than CCA2 compliance. We
have designed both a PKE and an IBE system secure in our proposed model. The proto-
cols are aimed to be simple yet practical ones, thus executing only secret-key involving
computations inside Trusted Platform Module (TPM) and remaining ones in insecure
volatile storage, e.g. Random Access Memory (RAM) etc.

4 Preliminaries

4.1 Notations

By PPT, we mean a probabilistic polynomial time algorithm with respect to a security
parameter κ. All adversaries defined here will be PPT except stated otherwise. Given
a probability distribution D and an element y, y ← D denotes selecting an element y
according to D. Let A be a probabilistic algorithm , then A(x1...xn) describes the output
distribution of A based on inputs x1, x1, ..., xn. We use E to denote the complement of
some event E. 〈G〉 denotes the group generated by the group generator G. Zp denotes
set of all integers modulo p, where p is prime. A function ν : N → R+ is said to be
negligible if ∀c > 0, ∃k′ such that ν(k) < k−c for all k′ < k.

4.2 Bilinear Groups

A bilinear pairing defined to be G = (p,Ga,Gb,Gt, e, Pa, Pb) where we choose Ga = 〈Pa〉,
Gb = 〈Pb〉 as additive and Gt as multiplicative groups of prime order p. A bilinear pairing
e is a map e : Ga ×Gb → Gt having the following properties.

– Bilinearity : For Pa ∈ Ga, Pb ∈ Gb and x, y ∈ Zp the following holds true: e(P xa ,
P y2) = e(Pa, Pb)

xy.

– Non-degeneracy : For any X ∈ Ga and Y ∈ Gb, if e(X ,Y) = 1T , the identity
element of Gt, then either X is the identity of Ga or Y is the identity of Gb.

– Efficiently Computable : The map e should be efficiently computable.

Here we will use Ga = Gb = G1,Ga = 〈P1〉 and Gt = G2.

4.3 Computational Bilinear Diffie-Hellman Assumption (CBDH)

Let G1 and G2 be groups of prime order p. Let e : G1 × G1 → G2 be an admissible
bilinear map and G1 = 〈P1〉. The CBDH problem in (G1,G2, e) is defined as: given 〈P1,
aP1, bP1, cP1〉 where a, b, c ∈ Z∗p, compute W = e(P1, P1)

abc ∈ G2. CBDH is assumed
to be hard if for all PPT adversaries A,

|Pr[ABDH(P1, aP1, bP1, cP1) = e(P1, P1)
abc] ≤ ν(κ)

4.4 Identity Based Encryption (IBE)

An identity-based encryption scheme, first introduced in [15], is defined by the following
four algorithms:

– Setup(κ): It takes the security parameter κ and returns systems parameters params
(announced to public) and master secret key (MSK) (known to private key generator
(PKG) only). The system parameters include finite message spaceM and ciphertext
space C.

– KeyGen(params, MSK, ID): It takes params, MSK and an arbitrary identity ID ∈ {0,
1}∗ as input and returns a private key dID. Here, ID is used as the public key and dID
as secret key.

– Encrypt(params, ID,M): It takes params, ID and a message M ∈M as input and
returns the ciphertext C ∈ C.

– Decrypt(params, C, dID): It takes params, C ∈ C, a the private key dID as input and
returns a message M ∈M.

The above four algorithm should satisfy the standard consistency check constraint
i.e ∀M ∈M : Decrypt(params, Encrypt(params, ID,M), dID) = M

4.5 Security Models

Chosen Ciphertext Attack (IND-ID-CCA2) Security: CCA2 is the standard ac-
ceptable notion of security for public key encryption (PKE) schemes [4][13]. Therefore,
the same has been adapted in IBE [5] to incorporate this stronger notion of security. In
an IBE scheme, CCA2 security game (IND-ID-CCA2) is first defined in [5]. An identity-
based encryption scheme is said to be semantically secure against chosen ciphertext
attack (IND-ID-CCA2) if an PPT adversary A has an negligible advantage in the follow-
ing game:

– Setup: The challenger C takes security parameter κ as input and runs the Setup

algorithm. It provides A the system parameters params and keeps the master secret
key (MSK) to itself.

– Phase 1: A makes queries q1, ..., qn where query qi is either of the following:

• Extraction query 〈IDi〉: C runs Extract and generates the private key di corre-
sponding to the public key IDi. It gives di to A.

• Decryption query 〈Ci, IDi〉: C first runs Extract to generate the private key di
for 〈IDi〉 and using di, it runs the algorithm Decrypt to decrypt the ciphertext
Ci. It sends the message to A.

These queries may be adaptive, i.e. each query qi may depend on the previous replies
to q1, ..., qi−1

– Challenge: Once A decides that Phase 1 training is over, it outputs two mes-
sages M0,M1 ∈ M of equal length and an identity ID∗ which it wishes to be chal-
lenged on. The only constraint is that ID∗ did not appear in any of the private
key extraction queries in Phase 1. Then C randomly chooses γ ∈R {0, 1} and sets
C∗ = Encrypt(params, ID∗,Mγ). It sends the challenge ciphertext C∗ to A.

– Phase 2: A asks more queries qn+1, ...qm where qi is one of the following:
• Extraction query 〈IDi〉: This queries are same as Phase 1 queries and they may

be asked adaptively. Only constraint is that ID∗ 6= IDi.
• Decryption query 〈Ci, IDi〉: This queries are similar to Phase 1 queries except
〈Ci, IDi〉 6= 〈C∗, ID∗〉.

– Guess: At the end, A outputs γ′ ∈ {0, 1}. C outputs 1 if γ = γ′ (A wins the game),
else outputs 0.

We define adversary A’s advantage against the CCA2 security of an IBE scheme as:

AdvE,ID-CCA2A = |Pr(γ = γ′)− 1

2
| ≤ ν(κ)

Glassbox-Decryption Oracle for IBE: (OGB-ID): In Glassbox security game for
IBE, the challenger substitutes standard CCA2 decryption oracle for IBE (OCCA2-ID)
with this more verbose version of the same what we call as Glassbox-Decryption Oracle
for IBE (OGB-ID). Simulation of OGB-ID is only relevant in a hybrid setting with the IBE
decryption algorithm precisely partitioned to execute partially in both RAM and TPM.
Consider the decryption oracle trying to recover the plaintext M from the ciphertext C
encrypted under the identity ID having the secret key dID. While OCCA2-ID hands over
to the adversary either the correct decryption M or an ABORT message in case of
incorrect decryption; in addition to that OGB-ID empowers the adversary by disclosing
a set of intermediate values I ← OGB-ID(C, ID, dID) which represents the collection of all
the entities computed/stored in RAM (outside TPM) until the decryption algorithm of
IBE protocol prematurely aborts/successfully terminates.

Glassbox (IND-ID-GB) Security: In [17], Vivek et al. has introduced the notion of
Glassbox security for public-key based cryptosystems by allowing the adversary access
to Glassbox-Decryption oracle for PKE (OGB-PK). We adapt this notion further to IBE
framework by replacing the regular black box decryption oracle as present in CCA2 game
(OCCA2-ID) with a flexible Glassbox-Decryption oracle for IBE (OGB-ID). An identity-based
encryption scheme is said to be secure against Glassbox attack (IND-ID-GB) if an PPT
adversary A has an negligible advantage in the following game:

– Setup: Identical to CCA2 security game.

– Phase 1: Key extraction query is same as CCA2 security. The only difference is
that the adversary will get access to the OGB-ID instead of ordinary black box CCA2
decryption oracle.

– Challenge: The challenger constructs the challenge ciphertext C∗ on ID∗ by en-
crypting a random message Mγ , γ ∈R {0, 1} in the same way as in the CCA2 security
game with a condition that ID∗ did not appear in any on the private key extraction
query.

– Phase 2: Same as Phase 1. In case of Key extraction query on any ID, ID 6= ID∗. A
will have access to OGB-ID with a condition that 〈C∗, ID∗〉 6= 〈C, ID〉 for decryption
query on 〈C, ID〉.

– Guess A will output γ′. C outputs 1 if γ = γ′ (A wins the game), else outputs 0.

We define adversary A’s advantage against the Glassbox security of an IBE scheme
as:

AdvE,GB-IDA = |Pr(γ = γ′)− 1

2
| ≤ ν(κ)

5 Glassbox Attack on Boneh-Franklin IBE

We first briefly look into Boneh-Franklin’s construction [5] of a CCA secure IBE (FULL-
IDENT). Following this, we will demonstrate how an attack can be mounted by a Glass-
box adversary despite all secret key involving computations being done in a tamper
resistant hardware module.

5.1 Boneh-Franklin CCA Secure IBE (FULLIDENT)

The construction of FULLIDENT achieves CCA security by applying a transformation
due to Fujisaki-Okamoto [7] on Boneh-Franklin’s CPA secure IBE scheme (BASIC-
IDENT) [5].

– Setup(κ): This algorithm is run by the PKG to set up system parameters and MSK.
Given an appropriate security parameter κ, the algorithm works as follows:

• Generate the definition of bilinear map 〈e,G1,G2, p〉 ← G(κ) where both the
groups G1 and G2 are of prime order p and the bilinear map is defined as e :
G1 ×G1 → G2

• Pick a random generator P1 ∈ G1

• Choose the master secret key (MSK) s ∈R Z∗p
• Set the master public key Ppub = sP1

• Select cryptographic hash functions:

∗ H1 : {0, 1}∗ → G∗1
∗ H2 : G2 → {0, 1}m for some m ∈ Z+

∗ H3 : {0, 1}m × {0, 1}m → Z∗p
∗ H4 : {0, 1}m → {0, 1}m

The message spaceM = {0, 1}m and ciphertext space C = 〈G1×{0, 1}m×G1×
G1〉

• Publish system parameters param = 〈e,m,G1,G2, p, P1, Ppub, H1, H2, H3, H4〉

– KeyGen(ID, param): For any arbitrary identity ID ∈ {0, 1}∗ associated to an user,
below are the steps that PKG performs to generate the private key for that identity:

• Compute QID = H1(ID)

• Compute private key dID = sQID

– Encrypt(M, ID, param): The sender executes the algorithm below to encrypt a mes-
sage M ∈M under public key ID:

• Compute QID = H1(ID)

• Choose a random string σ ∈R {0, 1}m
• Set r = H3(σ,M)

• Compute gID = e(QID, Ppub)

• Set C1 = rP1

• Set C2 = σ ⊕H2(g
r
ID)

• Set C3 = M ⊕H4(σ)

• Declare the ciphertext to be C = 〈C1, C2, C3〉

– Decrypt(C, dID, param): The receiver runs this algorithm on a hybrid platform to
decrypt the ciphertext C = 〈C1, C2, C3, C4〉 to recover message M . Private key dID
resides in TPM. Computations, as done in RAM/TPM, are marked accordingly.

• RAM: If C1 /∈ G∗1, then ABORT

• TPM: Compute α = e(dID, C1)

• Send TPM
α−−−−−→ RAM

• RAM: Compute σ = C2 ⊕H2(α)

• RAM: Compute M = C3 ⊕H4(σ)

• RAM: Compute r = H3(σ,M)

• RAM: If C1 6= rP1, then ABORT

• Output M as decryption of C

Remark: During simulation, Glassbox decryption oracleOGB-ID returns to the adversary
the set intermediate values I = {α,H2(α), σ,H4(σ),M, r} which are either computed
in RAM or sent to RAM from TPM until abortion/termination of the decryption algo-
rithm. A subtle difference to be observed is that unlike CCA2 decryption oracle which
is supposed to divulge M only if the consistency check (indicating the correctness of the
decrypted message) passes at the final step of the decryption algorithm, the Glassbox
decryption oracle always reveals M to the adversary in this particular implementation,
no matter decryption is correct or not. Nevertheless, a Glassbox attack does not rely
on the correctness of the decrypted message as we will see in section 5.2 and can still
be mounted even when a gibberish M is returned. The weakness of the implementa-
tion stems from the fact that OGB-ID returns the same set I irrespective of whether the
decryption succeeds/fails.

5.2 Glassbox Attack on FULLIDENT Scheme

Let the adversary A play Glassbox security game with the challenger C as outlined in
section 4.5. Following attack can be mounted on FULLIDENT scheme above to exploit
Glassbox vulnerability.

– Phase 1: A makes usual key extraction and decryption query to C as defined in
CCA2 security game.

– Challenge: A sends two messages 〈M0,M1〉 and an identity ID∗ to C. C chooses a
random bit δ ∈R {0, 1}, encrypts Mδ under ID∗ and sends the ciphertext C∗ = 〈C∗1 ,
C∗2 , C

∗
3 = Mδ ⊕H4(σ

∗)〉 back to A.
– Phase 2: A queries the glassbox oracle OGB-ID for the decryption of the ciphertext
C ′ = 〈C ′1 = C∗1 , C

′
2 = C∗2 , C

′
3 ∈R {0, 1}m〉 under the challenge identity ID∗ itself. C

hands over intermediate values I = {α′, H2(α
′), σ′, H4(σ

′),M ′, r′} for some arbitrary
message M ′. Since, C ′1 = C∗1 and C ′2 = C∗2 , evidently σ′ = σ∗. A can trivially recover
the challenge message by computing Mδ = C∗3⊕H4(σ

∗), thus identifying bit δ always.

6 GBPKE - A Glassbox Resilient PKE Scheme

– KeyGen(κ): This algorithm is run by the user to generate public-secret key-pair.
Given an appropriate security parameter κ, the algorithm works as follows:
• Generate the definition of bilinear map 〈e,G1,G2, p〉 ← G(κ) where both the

groups G1 and G2 are of prime order p and the bilinear map is defined as e :
G1 ×G1 → G2

• Pick a random generator P1 ∈ G1 and QID, Y, Z ∈R G1 and random integers
r, s ∈R Zp
• Compute Ppub = sP1

• Select cryptographic hash functions:
∗ H2 : G2 → {0, 1}m for some m ∈ Z+

∗ H3 : G1 × {0, 1}m ×G1 → Zp
∗ H4 : G2 ×G1 → Zp

The message spaceM = {0, 1}m and ciphertext space C = 〈G1×{0, 1}m×G1×
G1〉
• Compute secret key dID = 〈rsQID, r

−1〉 = 〈dID1, dID2〉
• Publish public key pubkey = 〈e,m,G1,G2, p, P1, Ppub, H2, H3, H4, QID, Y, Z〉

– Encrypt(M, pubkey): The sender executes the algorithm below to encrypt a mes-
sage M ∈M
• Choose random u ∈R Zp and X ∈R G1

• Set C1 = uP1

• Compute gID = e(QID, Ppub)
• Set C2 = M ⊕H2(g

u
ID)

• Compute t = H3(C1, C2, QID)
• Compute h = H4(e(u(tP1 +X), P1), QID)
• Set C3 = u(hY + Z)

• Set C4 = X

• Declare the ciphertext to be C = 〈C1, C2, C3, C4〉

– Decrypt(C, dID, pubkey): The receiver runs this algorithm on a hybrid platform
to decrypt the ciphertext C = 〈C1, C2, C3, C4〉 to recover message M . Private key
component dID1 resides in RAM while dID2 resides in TPM. Computations, as done in
RAM/TPM, are marked accordingly.

• RAM: Compute t = H3(C1, C2, QID)

• RAM: Compute h = H4(e(tP1 + C4, C1), QID)

• RAM: If e(C3, P1)
?
= e(hY + Z,C1) , then proceed as follows:

∗ RAM: Compute α = e(dID1, C1)
∗ Send RAM

α−−−−−→ TPM
∗ TPM: β = (α)dID2

∗ Send TPM
β−−−−−→ RAM

∗ RAM: Recover M = C2 ⊕H2(β)

Else ABORT

Remark: During simulation, Glassbox decryption oracleOGB-ID returns to the adversary
all such intermediate values which are either computed in RAM or sent to RAM from
TPM until abortion/termination of the decryption algorithm. The oracle initially hands
over a set of values Ifailure = {t, e(tP1 + C4, C1), h, e(C3, P1), e(hY + Z,C1)}. Further,

if the ciphertext integrity check (e(C3, P1)
?
= e(hY + Z,C1)) succeeds, the decryption

algorithm proceeds to compute an additional set of values Iconsistent = {α, β,H2(β),M},
otherwise ABORTs. Essentially, OGB-ID leaks the set of values Isuccess = {Ifailure ∪
Iconsistent} for a successful run of the algorithm.

Protocol Correctness: For honest execution of protocols, ‘correctness’ will hold when
the following conditions are satisfied:

1. The consistency check passes for a well-formed ciphertext C = 〈C1, C2, C3, C4〉:
e(C3, P1) = e(hY + Z,C1)

2. guID = e(dID1, C1)
dID2

1. Proof of Assertion 1: For a well-formed ciphertext, C1 = uP1, ∃u ∈ Zp. The same
u is reused in constructing C3 = u(hY +Z). Due to bilinearity property of the map
e,

e(C3, P1) = e(u(hY + Z), P1) = e(hY + Z, uP1) = e(hY + Z,C1)

2. Proof of Assertion 2: Recall that, secret key dID1 = rsP1 and dID2 = r−1. Ppub =
sP1, C1 = uP1. Due to bilinearity property of the map e,

guID = e(QID, Ppub)
u = e(QID, sP1)

u = e(sQID, uP1)

= [e(sQID, C1)
r]r

−1
= e(rsQID, C1)

r−1
= e(dID1, C1)

dID2

Theorem 1: Suppose hash functions H2, H3, H4 are treated as random oracles. Consider
an IND-GB adversary B having an advantage ν(κ) against the scheme GBPKE. Let B
make at most qH2 > 0 hash queries to its challenger C. Then C can solve CBDH problem
in the groups generated by G with at least an advantage 2ν(κ)/qH2.

Proof: Detailed proof of the theorem above is presented in Appendix A.

7 GBIBE - A Glassbox Resilient IBE Scheme

– Setup(κ): This algorithm is run by the PKG to set up system parameters and MSK.
Given an appropriate security parameter κ, the algorithm woks as follows:

• Generate the definition of bilinear map 〈e,G1,G2, p〉 ← G(κ) where both the
groups G1 and G2 are of prime order p and the bilinear map is defined as e :
G1 ×G1 → G2

• Pick a random generator P1 ∈ G1 and Y,Z ∈R G1

• Choose the master secret key (MSK) s ∈R Zp
• Set the master public key Ppub = sP1

• Select cryptographic hash functions:
∗ H1 : {0, 1}∗ → G1

∗ H2 : G2 → {0, 1}m for some m ∈ Z+

∗ H3 : G1 × {0, 1}m ×G1 → Zp
∗ H4 : G2 ×G1 → Zp

The message spaceM = {0, 1}m and ciphertext space C = 〈G1×{0, 1}m×G1×
G1〉

• Publish system parameters param = 〈e,m,G1,G2, p, P1, Ppub, H1, H2, H3, H4, Y,
Z〉

– KeyGen(ID, param): For any arbitrary identity ID ∈ {0, 1}∗ associated to an user,
below are the steps that PKG performs to generate the private key for that identity:

• Compute QID = H1(ID)
• Choose a random r ∈R Zp
• Compute private key dID = 〈rsQID, r

−1〉 = 〈dID1, dID2〉

– Encrypt(M, ID, param): The sender executes the algorithm below to encrypt a mes-
sage M ∈M under public key ID:

• Choose random u ∈R Zp and X ∈R G1

• Set C1 = uP1

• Compute QID = H1(ID)
• Compute gID = e(QID, Ppub)
• Set C2 = M ⊕H2(g

u
ID)

• Compute t = H3(C1, C2, QID)
• Compute h = H4(e(u(tP1 +X), P1), QID)
• Set C3 = u(hY + Z)
• Set C4 = X
• Declare the ciphertext to be C = 〈C1, C2, C3, C4〉

– Decrypt(C, dID, param): The receiver runs this algorithm on a hybrid platform to
decrypt the ciphertext C = 〈C1, C2, C3, C4〉 to recover message M . Private key
component dID1 resides in RAM while dID2 resides in TPM. Computations, as done in
RAM/TPM, are marked accordingly.

• RAM: Compute QID = H1(ID)

• RAM: Compute t = H3(C1, C2, QID)

• RAM: Compute h = H4(e(tP1 + C4, C1), QID)

• RAM: If e(C3, P1)
?
= e(hY + Z,C1) , then proceed as follows:

∗ RAM: Compute α = e(dID1, C1)
∗ Send RAM

α−−−−−→ TPM
∗ TPM: β = (α)dID2

∗ Send TPM
β−−−−−→ RAM

∗ RAM: Recover M = C2 ⊕H2(β)

Else ABORT

Remark: During simulation, Glassbox decryption oracle OGB-ID returns to the ad-
versary all such intermediate values which are either computed in RAM or sent to
RAM from TPM until abortion/termination of the decryption algorithm. The ora-
cle initially hands over a set of values Ifailure = {QID, t, e(tP1 + C4, C1), h, e(C3, P1),

e(hY + Z,C1)}. Further, if the ciphertext integrity check (e(C3, P1)
?
= e(hY + Z,C1))

succeeds, the decryption algorithm proceeds to compute an additional set of values
Iconsistent = {α, β,H2(β),M}, otherwise ABORTs. Essentially, OGB-ID leaks the set of
values Isuccess = {Ifailure ∪ Iconsistent} for a successful run of the algorithm.

Protocol Correctness: Directly follows from the protocol correctness of GBPKE as
shown earlier.

Theorem 2: Suppose hash functions H1, H2, H3, H4 are treated as random oracles.
Consider an IND-ID-GB adversary A having an advantage ν(κ) against the scheme
GBIBE. Let A make at most qX > 0 secret key extraction queries to its challenger B.
Then B can be viewed as an IND-GB adversary having at least an advantage ν(κ)/ê(1 +
qX) against the scheme GBPKE in the security game played with C. Here, ê ≈ 2.71 is
the base of natural logarithm.

Proof: Detailed proof of the theorem above is presented in Appendix B.

8 Conclusion

In this paper, we have defined the Glassbox security model for identity based cryptosys-
tems. The notion introduced here is stronger than de-facto standard CCA2 formalism.
Thus several CCA2 secure protocols can be shown vulnerable to the attack by a Glass-
box adversary. This new security paradigm closely captures real-world threats as posed
by Memory Scraper type malwares. We have proposed both PKE as well as IBE
protocols withstanding such attacks. Implementations of the same are intended to be

deployed on hybrid systems equipped with even a minimal tamper resistant hardware
module capable of performing group exponentiation operation only. Such systems may
be of immense interest to thwart, mitigate or prevent state-of-the-art malware attacks.

9 Open Directions

Our IBE scheme is provably secure in random oracle model. The construction requires
the challenger to inject one parameter of CBDH instance inside QID which the chal-
lenger needs to have control on. That was the bottleneck preventing us from proving the
scheme secure in standard model. Designing an IBE protocol secure in standard model
capable of withstanding Ram Scraper like malware attack is an interesting problem
which we leave open for further research.

References

1. Tinypbc: Pairings for authenticated identity-based non-interactive key distribution in sensor net-
works. Computer Communications 34(3), 485 – 493 (2011)

2. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography
against memory attacks. In: Theory of Cryptography. LNCS, vol. 5444, pp. 474–495. Springer
Berlin Heidelberg (2009)

3. Alwen, J., Dodis, Y., Wichs, D.: Leakage-resilient public-key cryptography in the bounded-retrieval
model. In: Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer Berlin
Heidelberg (2009)

4. Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-
key encryption schemes. In: Advances in Cryptology - CRYPTO ’98. LNCS, vol. 1462, pp. 26–45.
Springer Berlin Heidelberg (1998)

5. Boneh, D., Franklin, M.: Identity-based encryption from the weil pairing. In: Advances in Cryptol-
ogy - CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer Berlin Heidelberg (2001)

6. Coron, J.S.: On the exact security of full domain hash. In: Advances in Cryptology CRYPTO 2000.
LNCS, vol. 1880, pp. 229–235. Springer Berlin Heidelberg (2000)

7. Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryption schemes.
Journal of Cryptology 26(1), 80–101 (2013)

8. Huq, N.: A trend micro research paper, pos ram scraper malware - past, present, and
future (2014), http://www.trendmicro.com/cloud-content/us/pdfs/security-intelligence/

white-papers/wp-pos-ram-scraper-malware.pdf

9. Inc., V.: Visa data security alert, debugging software memory parsing vulnerability (2008), http:
//usa.visa.com/download/merchants/debugging_software_memory.pdf

10. Juma, A., Vahlis, Y.: Protecting cryptographic keys against continual leakage. In: Advances in
Cryptology - CRYPTO 2010. LNCS, vol. 6223, pp. 41–58. Springer Berlin Heidelberg (2010)

11. Kiltz, E., Pietrzak, K.: Leakage resilient elgamal encryption. In: Advances in Cryptology - ASI-
ACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer Berlin Heidelberg (2010)

12. Microsoft:
13. Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext

attack. In: Advances in Cryptology - CRYPTO ’91. LNCS, vol. 576, pp. 433–444. Springer Berlin
Heidelberg (1992)

14. Sarr, A., Elbaz-Vincent, P., Bajard, J.C.: A new security model for authenticated key agreement. In:
Security and Cryptography for Networks. LNCS, vol. 6280, pp. 219–234. Springer Berlin Heidelberg
(2010)

15. Shamir, A.: Identity-based cryptosystems and signature schemes. In: Blakley, G., Chaum, D. (eds.)
Advances in Cryptology, LNCS, vol. 196, pp. 47–53. Springer Berlin Heidelberg (1985)

16. (TCG), T.C.G.: Trusted platform module library, part i - architecture, family 2.0, level
00, revision 01.16 (2014), http://www.trustedcomputinggroup.org/files/static_page_files/

8C56AE3E-1A4B-B294-D0F43097156A55D8/TPMRev2.0Part1-Architecture01.16.pdf

17. Vivek, S.S., Selvi, S.S.D., Rangan, C.P.: Stronger public key encryption schemes withstanding ram
scraper like attacks. Cryptology ePrint Archive, Report (2012)

18. Yarom, Y., Falkner, K.: Flush+reload: A high resolution, low noise, l3 cache side-channel attack.
In: Proceedings of the 23rd USENIX Conference on Security Symposium. pp. 719–732. SEC’14,
USENIX Association (2014)

10 Appendix A: Security of GBPKE

Theorem 1: Suppose hash functions H2, H3, H4 are treated as random oracles. Consider
an IND-GB adversary B having an advantage ν(κ) against the scheme GBPKE. Let B
make at most qH2 > 0 hash queries to its challenger C. Then C can solve CBDH problem
in the groups generated by G with at least an advantage 2ν(κ)/qH2.

Proof: Let B be an IND-GB adversary against GBPKE. We can construct a challenger C
that interacts with B to solve the CBDH problem with negligible advantage.

Challenger C is given as input the following CBDH parameters 〈p,G1, G2, e〉 and
a random instance 〈P1, aP1, bP1, cP1〉 of the CBDH problem where 〈a, b, c〉 ∈R Z3

p and

G1 = 〈P1〉. Let D = e(P1, P1)
abc be the solution to the CBDH problem which C is

attempting to find by interacting with B as follows:

– Setup: C generates pubkey = 〈e,m,G1,G2, p, P1, Ppub, H2, H3, H4, QID, Y, Z〉 by set-
ting Ppub = aP1 and QID = bP1. It picks (r, t′, z′, y′) ∈R Z4

p. The secret key

dID = 〈raQID, r
−1〉 where 〈aQID = abP1〉 is unknown to C. Our proof views hash func-

tions 〈H2, H3, H4〉 as random oracles OH2,OH3,OH4 controlled by C as described
below:

OH2: Let B ask OH2 for the value of H2(Di), Di ∈ G2. C maintains a list LH2

of tuples of the form 〈Di, h2i〉.
• If the tuple 〈Di, h2i〉 is present in LH2, it returns H2(Di) = h2i.
• Otherwise, C picks a random string h2i ∈ {0, 1}m, add 〈Di, h2i〉 to LH2 and

responds with H2(Di) = h2i to B.

OH3: Let B ask OH3 for the value of H3(C1i, C2i, Qi). C maintains a list LH3

of tuples of the form 〈C1i, C2i, Qi, ti〉.
• If the tuple 〈Ci1, Ci2, Qi, ti〉 is present in LH3, it returns H3(Ci1, Ci2, Qi) = ti
• Otherwise, C picks ti ∈R Zp, adds 〈C1i, C2i, Qi, ti〉 to LH3 and responds with
H3(C1i, C2i, Qi) = ti to B.

OH4: Let B ask OH4 for the value of H4(Xi, Qi), Xi ∈ G2. C maintains a list
LH4 of tuples of the form 〈Xi, Qi, hi〉.
• If the tuple 〈Xi, Qi, hi〉 is present in LH4, it returns H4(Xi, Qi) = hi,
• Otherwise, C picks hi ∈R Zp, adds 〈Xi, Qi, hi〉 to LH4 and responds with
H2(Xi, Qi) = hi to B.

C sets h∗ = H4(e(t
′P1, cP1), QID), Y = 1

h∗ (QID + y′P1), Z = (−QID + z′P1)

– Phase 1: B makes OGB-PK queries to C. Let B request decryption of C = 〈C1, C2,
C3, C4〉 to C. C answers the queries as follows:

• Computes t = H3(C1, C2, QID)

• Computes h = H4(e(tP1 + C4, C1), QID)

• If e(C3, P1)
?
= e(hY + Z,C1), then proceed as follows:

∗ So far C could compute all the values as it knew the pre-requisite ones. To
compute α = e(dID1, C1), knowledge of dID1 is necessary. Simulation environ-
ment implicitly sets dID1 = rabP1, which C is not aware of. Hence, C simulates
α as follows:

α = e(dID1, C1)

= e(rabP1, uP1)

= e(u(bP1), aP1)
r

= e(uQID, Ppub)
r

C3 = u(hY + Z)

= u

(
h

h∗
(QID + y′P1)−QID + z′P1

)
= u

((
h

h∗
− 1

)
QID +

h

h∗
y′P1 + z′P1

)
=

(
h

h∗
− 1

)
uQID +

h

h∗
y′C1 + z′C1

∴ uQID =

(
h

h∗
− 1

)−1(
C3 −

h

h∗
y′C1 − z′C1

)
∗ Computes β = αdID2

∗ Computes h2 = H2(β)

∗ Computes M = C2 ⊕ h2
∗ C returns I = 〈t, e(tP1 + C4), h, e(C3, P1), e(hY + Z), α, β,H2(β),M〉

• Else ABORTs and returns I = 〈t, e(tP1 + C4), h, e(C3, P1), e(hY + Z), , , , 〉

– Challenge: After B decides Phase 1 training is over, B gives two messages of equal
length (M0,M1) which it wishes to be challenged on. Recall that y′, z′, t′ were chosen
during setup phase. C generates the challenge ciphertext C∗ = 〈C∗1 , C∗2 , C∗3 , C∗4 〉 as
follows:

• Sets C∗1 = cP1, where cP1 is one of the input to the CBDH problem.

• Choose C∗2 ∈R {0, 1}m

• Computes C∗3 = (y′ + z′)C∗1
• Compute t = H3(C

∗
1 , C

∗
2 , QID)

• Calculates C∗4 = (t′ − t)P1

C sends this challenge ciphertext C∗ to B.

Lemma 1: The challenge ciphertext C∗ = 〈C∗1 , C∗2 , C∗3 , C∗4 〉 is valid and well-formed.

Proof: Setting C∗1 = cP1 in the simulation implicitly sets u = c. We will prove our
claim in two steps. Firstly, we will show that h∗ = H4(e(tP1 + C∗4 , C

∗
1), QID) and

secondly C∗3 = (y′ + z′)C∗1 is of the form c(h∗Y + Z)

H4(e(tP1 + C∗4 , C
∗
1), QID)

= H4(e(tP1 + (t′ − t)P1, C
∗
1), QID)

= H4(e(t
′P1, cP1), QID)

= h∗

c(h∗Y + Z)

= c(QID + y′P1 −QID + z′P1))

= c(y′P1 + z′P1)

= y′(cP1) + z′(cP1)

= (y′ + z′)C∗1

= C∗3

– Phase 2: This phase is similar to Phase 1 with the constraint that B should not
make any decryption query on C∗

– Guess: Eventually, B outputs its guess γ′ ∈ {0, 1} for γ. C picks a random tuple
〈Di, h2i〉 from LH2 list and outputs Di as a solution to the CBDH problem.

By definition (as claimed in Theorem 1) of adversary B, its advantage in IND-GB
game is

AdvB = |Pr[γ = γ′]− 1

2
| ≥ ν(κ) (1)

Recall that D = guID is the solution to CBDH instance embedded in the game. Suppose,
E be the event of adversary B asking for the value of h2D = H2(D) ∈R {0, 1}m to OH2

at some point during the lifetime of the game. Because, h2D is uniformly distributed
in the view of the adversary B and is bitwise XORed with the message m, it behaves
identical to one-time-pad (OTP). In case B does not issue a query for H2(D), it gets no
advantage more than random guessing in distinguishing the two possible decryption of
challenge ciphertext:

|Pr[γ = γ′ | E] =
1

2
(2)

In case B issues a query for H2(D), it can certainly distinguish between the two possible
decryption of challenge ciphertext:

|Pr[γ = γ′ | E] = 1 (3)

Now,

Pr[γ = γ′] = Pr[γ = γ′ | E]Pr[E] + Pr[γ = γ′ | E]Pr[E]

≤ Pr[E] +
1

2
Pr[E] = Pr[E] +

1

2
Pr(1− Pr[E]) =

1

2
+

1

2
Pr[E] (4)

Again,

Pr[γ = γ′] ≥ Pr[γ = γ′ | E]Pr[E] =
1

2
(1 − Pr[E]) =

1

2
− 1

2
Pr[E] (5)

Combining equations [1], [4] and [5], 1
2Pr[E] ≥ |Pr[γ = γ′]− 1

2 | ≥ ν(κ) =⇒ Pr[E] ≥ ν(κ).
At the end of the simulation, D appears in LH2 with probability at least ν(κ). B
arbitrarily picks a value from the list LH2 and returns it as solution to CBDH instance.
Thus, the probability of hitting the correct solution is at least 2ν(κ)/qH2.

11 Appendix B: Security of GBIBE

Theorem 2: Suppose hash functions H1, H2, H3, H4 are treated as random oracles.
Consider an IND-ID-GB adversary A having an advantage ν(κ) against the scheme
GBIBE. Let A make at most qX > 0 secret key extraction queries to its challenger B.
Then B can be viewed as an IND-GB adversary having at least an advantage ν(κ)/ê(1 +
qX) against the scheme GBPKE in the security game played with C. Here, ê ≈ 2.71 is
the base of natural logarithm.

Proof: We will first convert a IND-ID-GB attack on GBIBE to a IND-GB attack on GBPKE.
This reduction, combined with Theorem 1, proves the claim above.

Let A be an IND-ID-GB adversary against GBIBE. We can construct an adversary B
that interacts with A to solve the challenge by challenger C in IND-GB security game.
Note that, B plays the role of a challenger in the former security game while an adversary
in the later.

C IND-GB−−−−−−−−−−−→
B is Adversary

B IND-ID-GB−−−−−−−−−−−→
B is Challenger

A

C executes KeyGen of GBPKE to generate public key pubkey = 〈e,m,G1,G2, p, P1, Ppub,
H2, H3, H4, QID, Y, Z〉 and secret key dID = 〈rsQID, r

−1〉. C gives pubkey to adversary B.
In the challenge phase of IND-GB game, B will supply two messages M0 and M1 to C and
receive the encryption of Mb under pubkey where b ∈ {0, 1}. After receiving polynomial
amount of training by querying secret key extraction and Glassbox decryption oracles,
B’s task is to emit its guess b′ ∈ {0, 1} for b.
B simulates the IND-ID-GB game environment for A as follows:

– Setup: B announces GBIBE system parameters param = 〈e,m,G1,G2, p, P1, Ppub,
H1, H2, H3, H4, Y, Z〉 = 〈pubkey−QID +H1〉. Our proof views hash function H1 as
a random oracle OH1 controlled by B.

OH1: Let A ask OH1 for the value of H1(IDi). B maintains a list LH1 of tuples
of the form 〈IDj , Qj , vj , cj , rj〉.
• If IDi is already queried, corresponding tuple 〈IDi, Qi, vi, ci, ri〉 is returned

where H1(IDi) = Qi.
• Otherwise, B selects vi, ri ∈ Zp. B tosses a random coin ∈ {0, 1} with
Pr[coin = 0] = λ. Calculation of exact value of λ requires some trade-off to

be considered and therefore will be computed later. We will use a technique
similar to Coron [6]. Queries will be answered differently depending on the
outcome of the toss of a coin with bias δ. If coin = 0, Qi = viP1 ∈ G1,
else Qi = viQID ∈ G1. B sets H1(IDi) = Qi. 〈IDi, Qi, vi, coini, ri〉 is added
to LH1 and the same is returned as response.

OH2: Let A ask OH2 for the value of H2(g
ui
i). B forwards the query unmodified

to C and the response from C is returned back to A.

OH3: Let A ask OH3 for the value of H3(C1i, C2i, Qi). B scans the list LH1 for
an entry of the form 〈IDi, Qi, vi, coini, ri〉. If such a tuple is found, B rewrites
the query as 〈viC1i, C2i, Qi〉, otherwise B retains the query as-is. B forwards the
query to C and the response from C is returned back to A. Note that, rewriting
the query does not alter A’s view of the interaction; as the output from H3 is
still random and parameterized by C1i while < C1i, viC1i > being correlated.

OH4: Let A ask OH4 for the value of H4(τ,Qi), τ ∈ G2. B scans the list LH1 for
an entry of the form 〈IDi, Qi, vi, coini, ri〉. If such a tuple is found, B rewrites
the query as 〈τvi , Qi〉, otherwise B retains the query as-is. B forwards the query
to C and the response from C is returned back to A.

– Phase 1 – Extraction Query: Suppose, A issues secret key extraction query for
identity IDi. B invokes OH1 to obtain the tuple 〈IDi, Qi, vi, coini, ri〉 where Qi =
H1(IDi).
• If coini = 0, B knows that Qi = viP1. It computes the secret key di1 =
ris(viP1) = rivi(sP1) = riviPpub and di2 = r−1i . B returns di = 〈di1, di2〉 to
the attacker.
• If coini = 1, B terminates. Attack on GBIBE fails prematurely.

– Phase 1 – Glassbox Decryption Query: Let A ask for the decryption of cipher-
text Ci = 〈Ci1, Ci2, Ci3, Ci4〉 under identity IDi. B invokes OH1 to obtain the tuple
〈IDi, Qi, vi, coini, ri〉 where Qi = H1(IDi).
• If coini = 0, B runs the key extraction query itself to retrieve the secret key
di of IDi. It uses di to respond to the query and returns intermediate values I
along with the message, if correctly decrypted.
• If coini = 1, B has no direct means to know the secret key of IDi. So, B queries

its IND-GB challenger C for the decryption of C ′i = 〈viCi1, Ci2, viCi3, Ci4〉 and
returns intermediate values I along with the message, if correctly decrypted.

– Challenge: After adequate training, A emits a message pair {M0,M1} and an
identity ID∗ to be challenged on. B invokes OH1 to obtain the tuple 〈ID∗, Q∗, v∗,
coin∗, r∗〉 where Q∗ = H1(ID

∗).

• If coin∗ = 0, B terminates. Attack on GBIBE fails prematurely.
• If coin∗ = 1, B forwards the message pair {M0,M1} wishing to be challenged on

to its challenger C in IND-GB game. C returns GBPKE encryption of an arbitrary
message Mγ , γ ∈R {0, 1} as 〈C ′1, C ′2, C ′3, C ′4〉. B rewrites the challenge ciphertext
as C∗ = 〈(v∗)−1C ′1, C ′2, (v∗)−1C ′3, C ′4〉 and sends it to A. To be convinced that
C∗ is a valid encryption of Mγ under ID∗, recall that dID = 〈dID1, dID2〉 = 〈rsQID,
r−1〉, H1(ID

∗) = Q∗ = v∗QID and corresponding secret key is d∗ = 〈d∗1, d∗2 =
(r∗)−1〉. Now, d∗1 = r∗sQ∗ = r∗s(v∗QID) = r−1r∗v∗(rsQID) = r−1r∗v∗dID1

[e((v∗)−1C ′1, d
∗
1)]

d∗2 = [e((v∗)−1C ′1, r
−1r∗v∗dID)]

(r∗)−1

= e((v∗)−1C ′1, r
−1v∗dID)

= e((v∗)−1C ′1, v
∗dID)

r−1

= e(C ′1, dID1)
dID2

– Phase 2 – Extraction Query: Same as in Phase 1.

– Phase 2 – Glassbox Decryption Query: Same as in Phase 1. Only difference
is, B aborts if the decryption of challenge ciphertext C∗ is asked under the challenge
identity ID∗. Attack on GBIBE fails prematurely.

– Guess: Eventually, A outputs its guess γ′ for γ. B also emits the same bit as its
output.

Unless aborted prematurely during simulation, algorithm B presents a proper IND-
ID-GB game environment to A. B controls the oracle OH1 itself. For the other three
oracles, viz. OH2,OH3 and OH4, B cleverly answers the queries by appropriately rewrit-
ing certain parameters and forwarding those to respective oracle services provided by
C. Similarly, both secret key extraction and decrytion queries issued by A are answered
by B itself, or by rerouting those to C depending on the identity ID the query is being
asked on. Moreover, if the game does not terminate until the challenge phase, A receives
a well-formed GBIBE encrypted ciphertext of C∗ of Mγ , γ ∈ {0, 1}. Hence, by defini-
tion (as claimed in Theorem 2) of adversary A, its advantage in IND-ID-GB game is
AdvA = |Pr[γ = γ′]− 1

2 | ≥ ν(κ).
To attain a tighter reduction on the probability bound of B’s advantage, we used

partitioning of identity space via a biased coin toss with bias λ = Pr[coin = 0], coin ∈
{0, 1}. Observe that,

– For coin = 0, OH1 returns a random Qi = viP1 ∈ G1, for some vi ∈R Zp. B can
answer key extraction queries for such identities, but aborts if A throws challenge
on this λ fraction of identities.

– For coin = 0, OH1 returns a random Qi = viQID ∈ G1, for some vi ∈R Zp. B can
accept challenge for such identities, but aborts if A asks for key extraction on this
(1− λ) fraction of identities, in either phase 1 or phase 2.

Let us calculate the probability of having the game run till A emits a guess after
asking at most qX key extraction queries without getting B prematurely aborted. The

probability of B not aborting during key extraction phase is λqX and the same during
challenge phase is (1 − λ). Composing both, the overall probability that B does not
abort during simulation is P(λ) = λqX (1− λ). Say, P(λ) attains maxima at λmax.

Differentiating both sides,

P(λ) = λqX (1− λ)

P′(λ) = qXλ
qX−1(1− λ)− λqX

Setting first derivative to zero,

qXλ
qX−1(1− λmax)− λqXmax = 0

λqX−1max {qX(1− λmax)− λmax} = 0

λmax =
qX

1 + qX

Therefore,

Pmax = λqXmax(1− λmax)

=

(
qX

1 + qX

)qX (
1− qX

1 + qX

)
=

(
1

1 + qX

)
. Lim
qX→∞

(
qX

1 + qX

)qX
=

(
1

1 + qX

)
.
1

ê
... [ê is the base of natural logarithm]

Hence, B solves the hard problem instance with an advantage at least
ν(κ)

ê (1 + qX)

