SAILFISH

Vetting Smart Contract
State-Inconsistency Bugs 1n Seconds

Priyanka Bose, Dipanjan Das, Yanju Chen, Yu Feng,
Christopher Kruegel, Giovanni Vigna

/‘,: e
o Tl S

SECLAB

oA
Smart contracts are popular SECLAB

® Smart contracts are computer programs run on a Ethereum Virtual
Machine (EVM)

e They process high value money transactions

— . Smart contracts are popular SECLAB

® Smart contracts are computer programs Run on a Ethereum Virtual
Machine (EVM)

e They process high value money transactions

Total value locked across protocols = 75B

Smart contract attacks SECLAB

Vulnerabilities in smart contracts result in a loss of millions ...

%

Smart contract attacks SECLAB

Vulnerabilities in smart contracts result in a loss of millions ...

@gi Y G

Smart contract attacks SECLAB

Vulnerabilities in smart contracts result in a loss of millions ...

s

BurgerSwap 2021 | S7.2M
Cream Finance S17M
Fei Protocol 2022 S80M Many more ...

0 o)
m#

Existing techniques 5 EI’JC L A B

Static analysis

Symbolic execution

Securify [Tsankov et. al., CCS 18]

Vandal [Brent et. al] Oyente [Luu et. al., CCS 16]

Manticore [Trail of bits]
Mytril [Consensys]

Slither [Feist et. al., WEBSTEB 19]
SmartCheck [Tikhomirov et. al., WEBSEB 18]

Runtime analysis Verification

Sereum [Rodler et. el., NDSS 19] ZEUS [Kalra et. al, NDSS 18],
ECFChecker [Grossman et. al., POPL 18] SeRIF [Cecchetti et. al, S&P 21]

0 o
ol

Existing techniques CECLAR
@ Variety of techniques to Symbolic techniques not

detect reentrancy and TOD scalable for large contracts

Static techniques incurs false
positives

Relies on some bug
signatures, misses others

ontributions SECLARB

e A general technique to detect reentrancy and transaction order dependence (TOD)

® Scales well for large contracts and achieves precision

Contributions SECLAB

e A general technique to detect reentrancy and transaction order dependence (TOD)

® Scales well for large contracts and achieves precision

.

Precision Scalability

Contributions SECLAB

e A general technique to detect reentrancy and transaction order dependence (TOD)

® Scales well for large contracts and achieves precision

.

Precision Sailfish Scalability

Sailfish SECLAB

Introduces State Inconsistency (Sl), a general
definition of reentrancy and transaction order
dependence (TOD)

Defines read-write dependencies of a storage
variables as Hazardous access, a root cause of SI

Sailfish T

Introduces State Inconsistency (Sl), a general
definition of reentrancy and transaction order
dependence (TOD)

Defines read-write dependencies of a storage
variables as Hazardous access, a root cause of SI

\@ Detects reentrancy and TOD
/ including the ones missed by
prior tools

Sailfish SECLAB

Introduces State Inconsistency (Sl), a general
definition of reentrancy and transaction order
dependence (TOD)

Defines read-write dependencies of a storage
variables as Hazardous access, a root cause of SI

Combines static analysis and symbolic execution

Summarizes the contract storage variable using
scalable value-summary analysis

N

@ Detects reentrancy and TOD
/ including the ones missed by
prior tools

14

Sailfish SECLAB

Introduces State Inconsistency (Sl), a general

dependence (TOD)

Defines read-write dependencies of a storage
variables as Hazardous access, a root cause of SI

Combines static analysis and symbolic execution

Summarizes the contract storage variables using

definition of reentrancy and transaction order \

@ Detects reentrancy and TOD

/ including the ones missed by

prior tools

@ Achieves scalability and

/' precision.

15

SECLAB

State Inconsistency (SI)

Smart contract: C
Methods: (f, f,..., f)

Schedule: H contains ordered

external/public function
invocations of C

State Inconsistency (SI)

ECLAB

Smart contract: C

= H, —
Methods: (fl' fz""’ fn) Initial state: SO L:l Lzl

4
Schedule: H contains ordered v S

external/public function
invocations of C

|

O

State Inconsistency (SI) S EJC L A B

Smart contract: C
Methods: (f, f,..., f)

Initial state: S0

Schedule: H contains ordered
external/public function
invocations of C

Initial state: SO

State Inconsistency (SI) EVC L A B

Smart contract: C
Methods: (f, f,..., f)

Initial state: SO
H1 and H2 contain

same function
invocations

=

Schedule: H contains ordered
external/public function
invocations of C

Initial state: So

0 o)
ol

SECLAB

State Inconsistency (SI)

Smart contract: C
Methods: (f, f,..., f)

Initial state: SO
H1 and H2 contain

same function
invocations

=

Schedule: H contains ordered

external/public function
invocations of C

Initial state: SO

If Hl;dé H,and S, 7 S,, contract C is said to have a State Inconsistency bug

20

0 o)
o

State Inconsistency bugs 5“ = JC | AB

State Inconsistency bugs

N

Reentrancy TOD

A subset of
/\ generalized
TOD

single-function cross-function

> create-based

—— delegate-based

stale-read

—— destructive-write

0 o)
m#

State Inconsistency bugs 5“ = JC | AB

State Inconsistency bugs

/ Reentrancy 1 TOD

/ — 1 A subset of
s A generalized
4 / TOD

[! :
\ single-function ,” cross-function
\ - |

-
\——|’

> create-based

—— delegate-based

stale-read

—— destructive-write

0 o)
ol

State Inconsistency bugs 5»' = JC | AB

State Inconsistency bugs

/ Reentrancy 1 TOD

/ — 1 A subset of
/ A generalized
/ / TOD

[! :
\ single-function ,” cross-function
\ - |

-
\——|’

| . create-based The details of the other bugs
can be found in our paper

—— delegate-based

stale-read

—— destructive-write

e A

The Reentrancy problem 5 EQC L A B

Bank’s balance: 500

User”s balance: © . Bank |
balance[User]: 100

withdraw(amount) {

0 if (balance[User] >= amount)

transfer_user(amount)

bank.withdraw(100)

balance[User] -= amount

The Reentrancy problem

User’s balance: 0

bank.withdraw(100)

withdraw(amount) {
100 100

L=
if (balance[User] >= amount)

e A

SECLAB

Bank state

Bank’s balance: 500
balance[User]: 100

a transfer_user(amount)

balance[User] -= amount

The Reentrancy problem

User’s balance: 0

bank.withdraw(100)

withdraw(amount) {

100 100

if (balance[User] >= amount)

e A

SECLAB

Bank state

Bank’s balance: 500
balance[User]: 100

a transfer_user(amount)

balance[User] -= amount

e A

The Reentrancy problem 5 EQC L A B

Bank state

Bank’s balance: 400

User’s balance: 100

balance[User]: 100

withdraw(amount) {
100 100

L=
if (balance[User] >= amount)

\

a transfer_user(amount)

bank.withdraw(100)

balance[User] -= amount

The Reentrancy problem

User’s balance: 100

bank.withdraw(100)

withdraw(amount) {
100 100

L=
if (balance[User] >= amount)

e A

SECLAB

Bank state

Bank’s balance: 400
balance[User]: 100

\
=a
o

transfer_user(amount)

balance[User] -= amount

e

The Reentrancy problem 5 EQC L A B

Bank’s balance: 400

User®s balance: 100 . Bank
balance[User]: ©

withdraw(amount) {

0 if (balance[User] >= amount)

bank.withdraw(100) e transfer_user(amount)

. (200]

balance[User] -= amount

0-0

The Reentrancy problem

User’s balance: 100

bank.withdraw(160) e

withdraw(amount)

e A

SECLAB

Bank state

Bank’s balance: 400

balance[User]: ©

0 if (balance[User] >= amount)

transfer_user(amount)

balance[User] -= amount

The Reentrancy problem

User’s balance: 100

bank.withdraw(100)

withdraw(amount)

0 if (balance[User] >= amount)

e A

SECLAB

Bank state

Bank’s balance: 400

balance[User]: ©

transfer_user(amount)

balance[User] -= amount

0 o)
o

The Reentrancy problem 5 EuC L A B

Bank’s balance: 400
User’s balance: 100

balance[User]: ©

withdraw(amount)

if (balance[User] >= amount)

transfer_user(amount)

bank.withdraw(160) e

Non-reentrant execution

is expected

balance[User] -= amount

l The contract’s state

The Reentrancy problem

User’s balance: 100

bank.withdraw(100)

SECLAB

Bank state

Bank’s balance: 400

withdraw(amount) {
100 100

L=
if (balance[User] >= amount)

balance[User]: 100

\

transfer_user(amount)

balance[User] -= amount

0 o)
o

0 o)
o

The Reentrancy problem 5 EuC L A B

Bank’s balance: 400
User’s balance: 100

balance[User]: 100

withdraw(amount) {
100 100

l I 0 if (balance[User] >= amount)

\

a transfer_user(amount)

bank.withdraw(100)

balance[User] -= amount

(o)

i

The Reentrancy problem 5 EuC L A B

balance[User] is

Bank’s balance: 400
User’s balance: 100 Bank not updated yet

balance[User]: 100

withdraw(amount) {

L=
l I if (balance[User] >= amount)

bank.withdraw(100)

balance[User] -= amount

e transfer_user(amount)

The Reentrancy problem

User’s balance: 200

bank.withdraw(100)

Bank

withdraw(amount) {

(o)

i

SECLAB

Bank state

Bank’s balance: 300

balance[User] is
not updated yet

balance[User]: 100

L=
if (balance[User] >= amount)

transfer_user(amount)

balance[User] -= amount

(o)

(o]
e =
(

The Reentrancy problem ECLAB

Bank’s balance: 300

User”s balance: 200 . Bank |
balance[User]: -100

withdraw(amount) {

0 if (balance[User] >= amount)

transfer_user(amount)

bank.withdraw(100)

balance[User] -= amount

User balance is
now negative

(o)

i

The Reentrancy problem 5 EuC L A B

Bank state

Bank’s balance: 300
User”s balance: 200 . Bank |
balance[User]: -100

The attacker withdraw(amount) {

drains out more
than 100 Ethers 0 if (balance[User] >= amount)

ﬂﬁ

, ©

Attacker
bank.withdraw(100)

transfer_user(amount)

balance[User] -= amount

The Reentrancy problem

User’s balance: 200

bank.withdraw(100)

withdraw(amount) {

(o)

(o]
e =
(

ECLAB

Bank state

Bank’s balance: 300
balance[User]: -100

0 if (balance[User] >= amount)

transfer_user(amount)

=8

The contract’s state
is not expected

, ©

balance[User] -= amount

SI and Reentrancy

withdraw(amount) {

%a if (balance[User] >= amount)

Z

0 transfer_user(amount)

bank.withdraw(100)

l = |

e balance[User] -= amount

} |

Non-reentrant execution (H,)

-9

bank.withdraw(100) [¢

}

0 o)
e =
(

ECLAB

withdraw(amount) {

if (balance[User] >= amount)

transfer_user(amount)

-100

balance[User] -= amount

SI and Reentrancy

withdraw(amount) {

%a if (balance[User] >= amount)

Z

bank.withdraw(100) e transfer_user(amount)

l = |

e balance[User] -= amount

} |

Non-reentrant execution (H,)

-9

bank.withdraw(100) [¢

}

0 o)
ol

SECLAB

withdraw(amount) {

if (balance[User] >= amount)

transfer_user(amount)

-100

balance[User] -= amount

H, # H, and Final state@H, # Final state@H,

0 o)
o

SI bugs: Intuition ' E J(j L AB

S

® Sl bugs occur because different schedules result in different final state, i.e.,
different values of storage variables.

® Two such schedules can result in different contract states if:

o There exist two operations, at least one is a write access, on a common
storage variable
o The relative order of such operations differ in these two schedules.

We define such a read-write hazard as Hazardous access

Hazardous access : E\JC L AB

—— Invocation 1

if (balance[User] >= amount)

'

transfer_user(amount)

o m mm ool Invocation 2
"‘-------F-~“‘4>- if (balance[User] >= amount)

v

transfer_user(amount)

balance[User] -= amount

(o)

(o]
e =
(

Hazardous access : EUC L AB

—— Invocation 1

if (balance[User] >= amount)

v

transfer_user(amount)

o m mm ool Invocation 2
"‘-------F--"‘ﬁh- if (balance[User] >= amount)

v

transfer_user(amount)

balance[User] -= amount

e

Hazardous access SECLAB

o Invocation 1
| |
1 1

if (balance[User] >= amount)

transfer_user(amount) !
s Invocation 2

transfer_user(amount)

'

balance[User] -= amount

Explorer: Hazardous access detection SECLAB

0 o)
o

Explorer: Hazardous access detection ECLAB

S

[N

S NI, N SN/

Smart Inter-procedural Storage dependency Hazardous accesses

contract CFGs (ICFGs) graph (SDG) J

Static analysis

Explorer: Reachability in SDG S‘ = JC | A B

a N evai

Smart contract \

Reachability in SDG

Static analysis

Explorer: Reachability in SDG

e
SECLAB

if (balance[User] >= amount)

Invocation 1

'

transfer_user(amount)

___ Invocation 2

[T}colored instructions form
a hazardous access pair

transfer_user(amount)

'

balance[User] -= amount

Explorer: Reachability in SDG

if (balance[User] >= amount)

Invocation 1

v

transfer_user(amount)

transfer_user(amount)

v

balance[User] -= amount

e
SECLAB

Invocation 2

Is the hazardous access

pair reachable from the
external call?

Explorer: Reachability in SDG S‘ = JC | A B

4 N ewal)
é % ﬁ)ﬂ ({D\O \ k reachable i
S e

Smart contract \

Reachability in SDG

Static analysis

Explorer: Reachability in SDG

= -

Smart contract

4 A
2o
25 & 4

\

ICFG

SDG Hazardous accesses

Static analysis

S

e

\ 4

SECLAB

reachable

=
Likely
Vulnerable

Reachability in SDG

[Can be false alarm

Explorer: Counter-example generation ECLAB

S

/ \ - ext. call\
é‘] 5}%{}% ﬁ;: ?H\.\g fﬁék rejachable
— = — 2
LQ P A, Jo 9B T CRso0 B {%}o
Smart contract ICFG SDG Hazardous accesses = 4 Counter
& Reachability in SDG example

Static analysis

e

Explorer: Counter-example generation SECLAB

, A counter-example is a slice
if (balance[User] >= amount) |! containing the problematic
* hazardous access pair

transfer_user(amount)

transfer_user(amount)

'

balance[User] -= amount

0 o)
ol

Refiner: Value-summary analysis + Symbolic execution SECLAB

® Value-summary analysis (VSA) outputs the potential symbolic values of
each storage variable under different constraints

e This will be used as the precondition of the symbolic evaluation

e

ECLAB

Refiner: Value-summary analysis + Symbolic execution

if (mutex == false)

‘

mutex = true

<\§\\§\\§\\§\“‘-‘

if (balance[User] >= amount)

!

transfer_user(amount)

I

balance[User] -= amount

=

mutex = false

__

withdraw

0 o)
e =
(

Refiner: Value-summary analysis + Symbolic execution
ECLARB
if (nutex == false) . Value-summary analysis outputs the
} . following for mutex:
mutex = true
} — . mutex: {<mutex=false, false>,
I | <mutex=false, true>}
transfer_user(amount) i y// \\\
| pre-condition value
balance[User] -= amount
L

mutex = false

__

withdraw

0 o)
ol

SECLAB

Refiner: Value-summary analysis + Symbolic execution

EEN A —
Symbolic j

Counter-example Evaluation §>
OE{;O v 5
Value-summary Likely

Vulnerable

ECLAB

Refiner: Value-summary analysis + Symbolic execution

if (mutex == false)

‘

mutex = true

<\§\\§\\§\\§\“‘-‘

if (balance[User] >= amount)

!

1

1

1

|

transfer_user(amount)

1

T Invocation 2
1

1! |

Do !

balance[User] -= amount

E_ __ Invocation 1
1

I 1

I 1

if (mutex == false)

mutex = false

__

ECLAB

Refiner: Value-summary analysis + Symbolic execution

if (mutex == false)

‘

mutex = true

<\§\\§\\§\\§\“‘-‘

if (balance[User] >= amount)

!

1
1
1
|
transfer_user(amount)
1
e | P TTTTTT T Invocation 2
1 : |
P !

E_ __ Invocation 1
1

I 1

I 1

balance[User] -= amount if (mutex == false)

mutex = false

__

: _ is + ' ' =
Refiner: Value-summary analysis + Symbolic execution ECLAB

___ Invocation 1

if (mutex == false) 1

‘

Pre-condition:
mutex can be false if mutex
is currently set to false

mutex = true

<\§\\§\\§\\§\“‘-‘

if (balance[User] >= amount)

l

Current program state:
mutex = true

transfer_user(amount)

 1<; """"""""""""""""" Invocation 2

balance[User] -= amount

if (mutex == false)

mutex = false

__

Refiner: Value-summary analysis + Symbolic execution

___ Invocation 1

if (mutex == false)

‘

mutex = true

<\§\\§\\§\\§\“‘-‘

if (balance[User] >= amount)

l

transfer_user(amount)

balance[User] -= amount

mutex = false

__

Pre-condition:
mutex can be false if mutex
is currently set to false

Current program state:
mutex = true

0 o)
e =
(

ECLAB

A
Not satisfiable

Invocation 2

if (mutex == false)

SECLAB

Refiner: Value-summary analysis + Symbolic execution

if (mutex == false) !
I : Pre-condition:
mutex can be false if mutex %
' is currently set to false -

E_ __ Invocation 1
1

I 1

1

1
1
: mutex = true
1

i if (balance[User] >= amount) ' Current program state: %
| mutex = true

transfer_user(amount)

i o
D !
1
o if (mutex == false) '
1

Not satisfiable

mutex = false

mutex = true

%

Sailfish is evaluated against
Securify, Vandal, Oyente,
Mythril

+

The dataset consists of

smart contracts

89,853 Solidity open-sourced

= Crawled from Etherscan

(i) Vulnerability detection

(ii) Performance

=> All contracts till October, 2020

=> Deduplicated

64

Vulnerability detection

Tool Reentrancy

Securify 6,321

Vandal

45,971

Mythril 3,708

Oyente 269

Sailfish 2,076

TOD

3,472

7,555

SECLAB

o)

e e

ECLAB

Vulnerability detection

Mythril timed out for
more than 50% of the
contracts

Sailfish

Oyente errored out for
around 60% of the
contracts

Vulnerability detection

Securify

Vandal

Mythril

Oyente

Sailfish

Tool

Reentrancy

6,321

45,971

3,708

269

2,076

TOD

3,472

7,555

SECLAB

Manually verified randomly-chosen 750

contracts from the our dataset
=> [0, 3000] lines of code

-> No tool errored out/timed out
=> Found 26 reentrancy bugs

Vulnerability detection

Tool

Securify

Vandal

Mythril

Oyente

Sailfish

Reentrancy

6,321

45,971

3,708

269

2,076

TOD

3,472

7,555

SECLAB

Manually verified randomly-chosen 750
contracts from the our dataset

-
-
-

Tool

Securify

Vandal
Mythril
Oyente

Sailfish

[0, 3000] lines of code
No tool errored out/timed out
Found 26 reentrancy bugs

True positive False positive False negative

9 (35%) 163 (22%) 17 (65%)
26 (100%) 626 (86%) ()
7 (27%) 334 (46%) 19 (73%)
8 (31%) 16 (2%) 18 (69%)

26 (100%) 11 (1.5%) 0 (0%)

Vulnerability detection

Tool

Securify

Vandal

Mythril

Oyente

Sailfish

Reentrancy

6,321

45,971

3,708

269

2,076

TOD

3,472

7,555

SECLAB

Manually verified randomly-chosen 750
contracts from the our dataset

-
-
-

Tool

Securify

—>
o 8 Vandal
Mythril

Oyente

Sailfish

[0, 3000] lines of code
No tool errored out/timed out
Found 26 reentrancy bugs

True positive False positive False negative

9 (35%) 163 (22%) 17 (65%)

26 (100%) 626 (86%) 0 (0%)

7 (27%) 334 (46%) 19 (73%)

8 (31%) 16 (2%) 18 (69%)
26 (100%)

11 (1.5%) 0 (0%)

Vulnerability detection

Tool

Securify

Vandal

Mythril

Oyente

Sailfish

Reentrancy

6,321

45,971

3,708

269

2,076

TOD

3,472

7,555

>
>
>

Y Y V)

Least false positives
No false negatives
Finds all true bugs

SECLAB

Manually verified randomly-chosen 750

contracts from the our dataset
[0, 3000] lines of code

No tool errored out/timed out

-
-
-

Tool

Mythril

Sailfish

Found 26 reentrancy bugs

True positive

9 (35%)
26 (100%
7 (27%)
8 (31%)

26 (100%

)

)

False positive False negative

163 (22%) 17 (65%)

626 (86%) 0 (0%)
334 (46%) 19 (73%)
16 (2%) 18 (69%)

11 (1.5%) 0 (0%)

O

Vulnerability detection S E JC L AB

Tool Reentrancy TOD Manually verified randomly-chosen 750

contracts from the our dataset
=> [0, 3000] lines of code

-> No tool errored out/timed out

Securify 6,321

Vandal

45,971

=> Found 26 reentrancy bugs

Mythril 3,708

Oyente 269 3,472

Tool True positive False positive False negative

Securify 9 (35%) 163 (22%) 17 (65%)

Sailfish 2,076 7,555

Vandal 26 (100%) 626 (86%) 0 (0%)
Mythril 7 (27%) 334 (46%) 19 (73%)

Oyente 8 (31%) 16 (2%) 18 (69%)

e Sailfish found 47 bugs not found by
any other tool

Sailfish 26 (100%) 11 (1.5%) 0 (0%)

72

O

SECLAB

£
=
7z
60@
%, 1 @
3 c\\\ro ™
$
S
o @
O 0
Z, i
2 o
3 (o))
o
2,
Wﬂ* (7p]
] b
o

Max

O
=
:
=
—
3)
al

ECLAB

Performance

Sailfish is 6 times

Sailfish is 30 times faster than Securify

faster than Mythril

197s 183s

. o oA

> We presented Sailfish, a bug finding tool for reentrancy and TOD

0 o)
ol

SECLAB

Conclusion

> We presented Sailfish, a bug finding tool for reentrancy and TOD

> Sailfish generalized reentrancy and TOD in terms of State Inconsistency

0 o)
o

Conclusion S‘ F JC L AB

We presented Sailfish, a bug finding tool for reentrancy and TOD

> Sailfish generalized reentrancy and TOD in terms of State Inconsistency

> Sailfish combines static analysis and VSA-enabled symbolic execution to
achieve both precision and scalability

Conclusion

0 o)
o

SECLAB

We presented Sailfish, a bug finding tool for reentrancy and TOD
Sailfish generalized reentrancy and TOD in terms of State Inconsistency

Sailfish combines static analysis and VSA-enabled symbolic execution to
achieve both precision and scalability

Sailfish outperforms state-of-the-art techniques in both performance and
bug finding ability

THANKS!

W @cinderellaOx80
© priyanka@cs.ucsb.edu
@ https://github.com/ucsb-seclab/sailfish

