BootStomp: On the Security of
Bootloaders in Mobile Devices

Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio,
Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili,
Christopher Kruegel, Giovanni Vigna
University of California, Santa Barbara

Presented at USENIX 2017

What is a Bootloader?

What is a Bootloader?

Software module which:

e Initializes the device and its peripherals
e Loads the kernel code from secondary storage

e Jumpstoit

We focused on Android bootloaders

Android Bootloaders Overview

e No standard (e.g., ARM gives guidelines)
e Booting through several stages

e Protect integrity of user's device and data:
o Trusted boot

e Bootloader unlocking

Why attacking bootloaders?

Attacking Bootloaders

An attacker controlling the bootloader might:

e Boot custom Android OS (bootloader unlocking)
o Persistent rootkit

e DBrick the device

e In some cases, achieve controls over peripherals

Safety Properties
Integrity of the booting process

e Android OS is verifiably to be in a non-tampered state

e Aroot process cannot interfere with peripherals setup
Unlocking security mechanism

e Aroot process cannot unlock the bootloader

e Physical attacker cannot unlock the bootloader

Threat Model

Threat Model

e Attacker has control over the Android OS

o Root privileges

Threat Model

e Attacker has control over the Android OS
o Root privileges
e If an attacker has root privileges is game over, why even bother?

o The safety properties should hold anyway

Outline

e Booting Process

e Bootloader Unlocking
e BootStomp

e FEvaluation

e Mitigations

e Conclusions

Outline

e Booting Process

e Bootloader Unlocking
e BootStomp

e FEvaluation

e Mitigations

e Conclusions

Booting Process

God mode

EL3

EL1

Kernel mode

User mode

ELO

Booting Process

God mode Kernel mode User mode

EL3|EL1 ELO
[BL1/BootROM]

|
e e)

—— Load and Verify

Booting Process

God mode Kernel mode User mode

EL3|(ELT ELO
[BL1/BootROM]

l ___ Secure World

Non-Secure World
[BL2]—P[BL31]—

-9 Load and Verify

Booting Process

God mode Kernel mode User mode

Peripheral
kFirmware (radio)w

EL3|EL1 ELO

L BL1/BootROM]
l b[Trusted OS (tz)]——b[Trusted Apps]

Secure World

Non-Secure World
[BL2]—P[BL31]—

-9 Load and Verify

Booting Process

God mode

EL3
L BL1/BootROM]

Kernel mode

N

Peripheral

Firmware (radio)

)

|

e e)

-9 Load and Verify

—>[BL33 (aboot)]

!

[

Android Kemel
(boot)

User mode

ELO

—b[Trusted Apps]

Secure World

Non-Secure World

]_

Android Framework/Apps
(system/data)

Booting Process

God mode

EL3
L BL1/BootROM]

EL1

|

e e)

-9 Load and Verify

Kernel mode

N

Peripheral
Firmware (radio)

BL33 (aboot)]

[

Android Kemel
(boot)

User mode

Bootloader
ELO

e
ol s

Secure World

Non-Secure World

Android Framework/Apps
(system/data)

Booting Process

God mode

EL3
L BL1/BootROM]

Kernel mode

N

Peripheral

Firmware (radio)

)

|

e e)

-9 Load and Verify

—P[BL33 (aboot)]

Y

[

Android Kemel
(boot)

User mode

Android OS

ELO /
Ry

Secure World

Non-Secure World

Android Framework/Apps
(system/data)

Booting Process

God mode

EL3
L BL1/BootROM]

Kernel mode

N

Peripheral

Firmware (radio)

'

i e)

—P» Chain of trust

—P[BL33 (aboot)]

v

[

Android Kemel
(boot)

User mode

ELO

—b[Trusted Apps]

Secure World

Non-Secure World

]_

Android Framework/Apps
(system/data)

Booting Process

God mode

EL3
L BL1/BootROM]

Kernel mode

'

i e)

—P» Chain of trust

Peripheral
LFirmware (radio)\w

o

if UNLOCKED,
skip verification

"

User mode

ELO

—b[Trusted Apps]

Secure World

Non-Secure World

(boot)

[AndroldKemel

(system/data)

{ Android Framework/Apps }

Outline

e Booting Process

e Bootloader Unlocking
e BootStomp

e FEvaluation

e Mitigations

e Conclusions

Bootloader Unlocking

Two steps

STechguide su6:01

< Developer options

On

Update Cyanogen recovery
Update th system ug
Debugging

Android debugglng

interface

nable the

Debugging notify

Enable Bluetooth HCI snoop log

Capture all Bluetooth HCI packets ina

OEM unlockmg
Allow the bootloader to be unlocked

Process stats
Geeky stats ahout rur

Debugging

USB debugging

Debug mode when USB is connectec

PRU!]UET NAME - hammerhead
R NT - hamnerhaad D820(H) 16GB

SION -
BUUTLURDER VERSIUN =
BR&EBE#DIVERSIDN = NBQNR 1 0,25,0,23

NFO - N
SERIAL NUMBER - 0829d8fel)0518f2c
SIGNING - production

Bootloader Unlocking

Against an attacker with physical access

STechguide

< Developer options

On

Debugging

interface

Debuggmg notufy

ADB over network

Update Cyanogen recovery

Update recovery with syste

Andrond debugglng

Enable TCP/IP debugging over network
nterfaces (Wi-Fi USR netwarks). This

Developer options

will never sleep while charging

Enable Bluetooth HCI snoop log
Cap all Bluetooth HCI packets in a file
OEM unlocking

Allow the bootloader to be unlocked .
Process stats /
Geeky stats about running processes
Debugging
USB debugging

Debug mode when USB is connectec .

Against root process

PRODUCT_NAME - hammerhead
RRIRNT hamnerhaad D820(H) 16GB

SION
BUUTLURDER VERSIUN
BRSEBRND VERSION - NBQHR 1 0,25,0,23
CARRIER INFO - Non
SERIAL NUMBER - DSZQdSFel)()EiSFZc
SIGNING - production

Bootloader Unlocking

The unlocking state (device’s security state) saved on persistent storage

e It should be writable only by high privileged components (e.g.,

bootloader or secure OS)

Can a compromised Android OS affect the booting

process?

Can a compromised Android OS affect the booting

process?

Yes!

Android

OS

&

Persistent
Storage

&

We need a tool to automatically verity

the safety properties

Towards a Bootloader Analyzer

Bootloaders are hard to analyze:

e The source code is hardly available

Towards a Bootloader Analyzer

Bootloaders are hard to analyze:

e The source code is hardly available — Binary (blob)

Towards a Bootloader Analyzer

Bootloaders are hard to analyze:

e The source code is hardly available — Binary (blob)

e Dynamic execution is impractical

Towards a Bootloader Analyzer

Bootloaders are hard to analyze:

e The source code is hardly available — Binary (blob)

e Dynamic execution is impractical - Hardware is required

Towards a Bootloader Analyzer

Bootloaders are hard to analyze:

e The source code is hardly available — Binary (blob)
e Dynamic execution is impractical - Hardware is required

e Execute before the Android OS

Towards a Bootloader Analyzer

Bootloaders are hard to analyze:

e The source code is hardly available — Binary (blob)
e Dynamic execution is impractical - Hardware is required

e Execute before the Android OS — Known library/syscall are not in use

Towards a Bootloader Analyzer

Bootloaders are hard to analyze:

e The source code is hardly available — Binary (blob)
e Dynamic execution is impractical - Hardware is required

e Execute before the Android OS — Known library/syscall are not in use

o There is no memcpy!

Outline

e Booting Process

e Unlocking Mechanism
e BootStomp

e FEvaluation

e Mitigations

e Conclusions

BootStomp: A Bootloader Analyzer

Automatic static binary tool for finding security vulnerabilities in

bootloaders

BootStomp: A Bootloader Analyzer

Automatic static binary tool for finding security vulnerabilities in

bootloaders

e Determine whether attacker-controlled data can influence the

bootloader intended behavior

e Traceable output

o Verify generated alerts

BootStomp: A Bootloader Analyzer

BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

BootStomp: A Bootloader Analyzer

BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

e [t uses a fully symbolic taint analysis engine to trace

attacker-controlled data

BootStomp: A Bootloader Analyzer

BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

e Arbitrary memory writes
e Arbitrary memory reads
e Attacker can control loops iterations

e Bypass unlocking mechanism

o Functions overwriting the security state on persistent storage

BootStomp: A Bootloader Analyzer

Mobile

Device

Manual

Mobile Bootloader

(Binary BLOB)

Extraction IEJ]II
- 10110
01001

BootStomp !

Seed
oo Finder
Module

Hex-Rays
Decompiler

Sink

CFG Finder

—>

Seed

Module

Lo

Sink

e

Taint
Analysis
Engine

angr

BootStomp: A Bootloader Analyzer

BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

e Seeds of taint
e Taint propagation and removal
e Sinks of taint

e Taint checking

BootStomp: Seeds of Taint

e Data read from persistent storage

e Data used by the unlocking procedure

BootStomp: Seeds of Taint

e Data read from persistent storage

e Data used by the unlocking procedure

BootStomp must find these functions

® 102 sub_7001F04 ((__ int6A"

BootStomp: Seeds of Taint

Automatic detection of functions:

e Identify the functions based on the “log” strings

e Analysis to identify the arguments to taint

92 LA o
93 vlié = sub_7002D00 (a3, v1l, v1i2, 1i64); // emmc read function
94 A= = 9.

95
96 £1])
97 sub_7/0032BC (0xB3u, 8u);

‘ 98 res Qi64;
55 i
100 {
101 sub_705F924 ((__integf" ™q\n", v23, v1i7, vig, v1i9, v20, v21, v22, v45);// logging function 1

3d\n", v23, v39, v40, v4l, v42, v43, v44, v45);// logging function 2

P 103 result = OxXFFFFFFFFi64)

104 }
105 return result;

® 106)

BootStomp: Seeds of Taint

Optionally, provided by the security analyst

e Useful for finding the unlocking function

o Several do not contain log messages

BootStomp: Taint Propagation and Removal

e Taints are symbolic expressions encoding how the value is computed

e Propagated and removed implicitly during the dynamic symbolic

execution traversal

BootStomp: Taint Propagation and Removal

Code Memory

—» ty =seed_func();

—» X= ty + 5; /
—» x=0xdeadbeef: X |

ty Tainted

Symbolic expressions Page

—» ty =TAINT ty
—p X=TAINT ty+5

——3p X = 0xdeadbeef

BootStomp: Sinks of Taint

e Memcpy-like functions
e Dereference of a tainted variable
e Comparisons of tainted variables in loops’ conditions

e Write to a persistent storage of a tainted variable

BootStomp: Sinks of Taint

e Memcpy-like functions

o Small functions with loop copying data between two buffers

o Many callers (a threshold is used)

e Dereference of a tainted variable
e Comparisons of tainted variables in loops’ conditions

e Write to a persistent storage of a tainted variable

BootStomp: Sinks of Taint

e Memcpy-like functions
e Dereference of a tainted variable
e Comparisons of tainted variables in loops’ conditions

e Write to a persistent storage of a tainted variable

BootStomp: Taint Checking

e An alertis raised when a tainted variable:

O

O

Reaches a memcpy-like function
Gets dereferenced
Can control the number of iterations of a loop

Gets written to a persistent storage

BootStomp: Taint Checking

e An alertis raised when a tainted variable:

O

O

O

O

Reaches a memcpy-like function
Gets dereferenced
Can control the number of iterations of a loop

Gets written to a persistent storage

e A traceable output is produced

Limitation: Path Explosion Problem

e Limited function traversal

Limitation: Path Explosion Problem

e Limited function traversal

o Tainted arguments and call stack size < threshold ?

Limitation: Path Explosion Problem

e Limited function traversal

o Tainted arguments and call stack size < threshold ?
m Yes — stepinto

m No — stepover

Limitation: Path Explosion Problem

e Limited function traversal

e Limited loop iterations

Limitation: Path Explosion Problem

e Limited function traversal

e Limited loop iterations
o Threshold used

Limitation: Path Explosion Problem

e Limited function traversal
e Limited loop iterations

e Timeout

Outline

e Booting Process

e Unlocking Mechanism
e BootStomp

e Evaluation

e Mitigations

e Conclusions

BootStomp has been evaluated against 4 different

bootloaders

Evaluation: Bugs

Bootloader
Qualcomm (Latest)
Qualcomm (Old)
NVIDIA
HiSilicon
MediaTek

Total

Total Alerts

17

36

Bugs
0
1 (already known)
1
5

7 (6 Odays)

(Further details in the paper)

Ok good, but how bad are them?

valuation: Bugs

Evaluation: Bugs

Evaluation: Bugs

Great, but what can you do with it?

Evaluation: Bugs

Great, but what can you do with it?

e Alot! Example: some bootloaders work in EL3

Evaluation: Unlocking Bypass

Bootloader Writes to flash? Potentially vulnerable?
Qualcomm (Latest) 6 YES*
Qualcomm (Old) 4 YES*
NVIDIA 9 NO
HiSilicon 17 YES*
MediaTek 1 NO

(Yes means BootStomp found a write to a persistent storage)

Bootloader Unlocking Bypass

(&expected digest, &from flash, 32);
oem key, input len, &ke

Y

// Log thé

onaciao", &key dige
to flash (hash output, 16)

&hash output);

// Log
return O;

Overview

e Booting Process

e Unlocking Mechanism
e BootStomp

e Evaluation

e Mitigations

e (Conclusions

Mitigations

e Google approach

o The key used to encrypt/decrypt user data contains the security state (locked /unlock)

Mitigations

e Google approach
o The key used to encrypt/decrypt user data contains the security state (locked /unlock)

m [f the state changes, the key changes — user’s data cannot be decrypted

Mitigations

e Google approach
o The key used to encrypt/decrypt user data contains the security state (locked /unlock)
m [f the state changes, the key changes — user’s data cannot be decrypted

e Our proposal

o Security state stored in the eMMC's Replay Protected Memory Block (RPMB)

Mitigations

e Google approach
o The key used to encrypt/decrypt user data contains the security state (locked /unlock)

m [f the state changes, the key changes — user’s data cannot be decrypted

e Our proposal

o Security state stored in the eMMC's Replay Protected Memory Block (RPMB)
m Modify the trusted OS to allow only the bootloader to modify it

Outline

e Booting Process

e Unlocking Mechanism
e BootStomp

e FEvaluation

e Mitigations

e Conclusions

Responsible Disclosure

All bugs reported, acknowledged and already fixed

Conclusions

v First study to explore Android bootloaders

v Automated technique to analyze bootloaders with traceable alerts

v Found 6 zero days in various bootloaders

v https: //github.com /ucsb-seclab/bootstomp

https://github.com/ucsb-seclab/bootstomp

That's All

Questions?

Buffer overtlow

// oem get info function

oem read(block, block len);
buf = malloc(block[0]); // size block

// .. additional code
number or blocks = block[1l];
block_id = block[2];

if (number of blocks ==

|| block _id == number of blocks) {
return;

}

memcpy (buf + off, block[3], 0x300);

Buffer overtlow

// oem get info function

oem read(block, block len);
buf = malloc(block[0]); // size block

// .. additional code
number or blocks = block[1l];
block_id = block[2];

if (number of blocks ==

|| block _id == number of blocks) {
return;

}

memcpy (buf + off, block[3], 0x300);

Buffer overtlow

// oem get info function

oem read(block, block len);
buf = malloc(block[0]); // size block

// .. additional code
number or blocks = block[1l];
block _id = block[2];

if (number of blocks ==

| | block id == number of blocks) {
return;

}

memcpy (buf + off, block[3], 0x300);

Buffer overtlow

// oem get info function

oem read(block, block len);
buf = malloc(block[0]); // size block

// .. additional code
number or blocks = block[1l];
block _id = block[2];

if (number of blocks ==

| | block id == number of blocks) {
return;

}

memcpy (buf + off, block[3], 0x300); // buffer overflow!

It the bootloader only loads the Android O.S., how

can an attacker harm the device?

It the bootloader only loads the Android O.S., how

can an attacker harm the device?

Bootloaders are very diverse

BL33 in practice

Qualcomm and NVIDIA's:

e BL33 conforms very closely to Google’s Verified Boot guidelines,
e BL33runsinELl

BL33 in practice

Qualcomm and NVIDIA’s
Huawei HiSilicon:

e BL33is also responsible for initializing modem and peripherals
e BL33 runsin EL3.

BL33 in practice

Qualcomm and NVIDIA’s
Huawei HiSilicon

MediaTek:

e BL33 is also responsible for initializing modem
e BL33runsin ELI

