
BootStomp: On the Security of
Bootloaders in Mobile Devices
Nilo Redini, Aravind Machiry, Dipanjan Das, Yanick Fratantonio,

Antonio Bianchi, Eric Gustafson, Yan Shoshitaishvili,
Christopher Kruegel, Giovanni Vigna

University of California, Santa Barbara

Presented at USENIX 2017

What is a Bootloader?

What is a Bootloader?
Software module which:

● Initializes the device and its peripherals

● Loads the kernel code from secondary storage

● Jumps to it

We focused on Android bootloaders

Android Bootloaders Overview
● No standard (e.g., ARM gives guidelines)

● Booting through several stages

● Protect integrity of user's device and data:
○ Trusted boot

● Bootloader unlocking

Why attacking bootloaders?

Attacking Bootloaders
An attacker controlling the bootloader might:

● Boot custom Android OS (bootloader unlocking)
○ Persistent rootkit

● Brick the device

● In some cases, achieve controls over peripherals

Safety Properties
Integrity of the booting process

● Android OS is verifiably to be in a non-tampered state

● A root process cannot interfere with peripherals setup

Unlocking security mechanism

● A root process cannot unlock the bootloader

● Physical attacker cannot unlock the bootloader

Threat Model

Threat Model
● Attacker has control over the Android OS

○ Root privileges

Threat Model
● Attacker has control over the Android OS

○ Root privileges

● If an attacker has root privileges is game over, why even bother?
○ The safety properties should hold anyway

Outline
● Booting Process

● Bootloader Unlocking

● BootStomp

● Evaluation

● Mitigations

● Conclusions

Outline
● Booting Process

● Bootloader Unlocking

● BootStomp

● Evaluation

● Mitigations

● Conclusions

Booting Process
God mode Kernel mode User mode

Booting Process
God mode Kernel mode User mode

Booting Process
God mode Kernel mode User mode

Booting Process
God mode Kernel mode User mode

Booting Process
God mode Kernel mode User mode

Booting Process

Bootloader

God mode Kernel mode User mode

Booting Process

Android OS

God mode Kernel mode User mode

Booting Process
God mode Kernel mode User mode

 Chain of trust

Booting Process
God mode Kernel mode User mode

 Chain of trust

Outline
● Booting Process

● Bootloader Unlocking

● BootStomp

● Evaluation

● Mitigations

● Conclusions

Bootloader Unlocking
Two steps

Bootloader Unlocking
Against an attacker with physical access Against root process

Bootloader Unlocking
The unlocking state (device’s security state) saved on persistent storage

● It should be writable only by high privileged components (e.g.,

bootloader or secure OS)

Can a compromised Android OS affect the booting

process?

Can a compromised Android OS affect the booting

process?

Yes!

Bootloader

Android
OS

Persistent
Storage

Read

Load

We need a tool to automatically verify

the safety properties

Towards a Bootloader Analyzer
Bootloaders are hard to analyze:

● The source code is hardly available

Towards a Bootloader Analyzer
Bootloaders are hard to analyze:

● The source code is hardly available → Binary (blob)

Towards a Bootloader Analyzer
Bootloaders are hard to analyze:

● The source code is hardly available → Binary (blob)

● Dynamic execution is impractical

Towards a Bootloader Analyzer
Bootloaders are hard to analyze:

● The source code is hardly available → Binary (blob)

● Dynamic execution is impractical → Hardware is required

Towards a Bootloader Analyzer
Bootloaders are hard to analyze:

● The source code is hardly available → Binary (blob)

● Dynamic execution is impractical → Hardware is required

● Execute before the Android OS

Towards a Bootloader Analyzer
Bootloaders are hard to analyze:

● The source code is hardly available → Binary (blob)

● Dynamic execution is impractical → Hardware is required

● Execute before the Android OS → Known library/syscall are not in use

Towards a Bootloader Analyzer
Bootloaders are hard to analyze:

● The source code is hardly available → Binary (blob)

● Dynamic execution is impractical → Hardware is required

● Execute before the Android OS → Known library/syscall are not in use
○ There is no memcpy!

Outline
● Booting Process

● Unlocking Mechanism

● BootStomp

● Evaluation

● Mitigations

● Conclusions

BootStomp: A Bootloader Analyzer
Automatic static binary tool for finding security vulnerabilities in

bootloaders

BootStomp: A Bootloader Analyzer
Automatic static binary tool for finding security vulnerabilities in

bootloaders

● Determine whether attacker-controlled data can influence the

bootloader intended behavior

● Traceable output

○ Verify generated alerts

BootStomp: A Bootloader Analyzer
BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

BootStomp: A Bootloader Analyzer
BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

● It uses a fully symbolic taint analysis engine to trace

attacker-controlled data

BootStomp: A Bootloader Analyzer
BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

● Arbitrary memory writes

● Arbitrary memory reads

● Attacker can control loops iterations

● Bypass unlocking mechanism
○ Functions overwriting the security state on persistent storage

BootStomp: A Bootloader Analyzer

BootStomp: A Bootloader Analyzer
BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

● Seeds of taint

● Taint propagation and removal

● Sinks of taint

● Taint checking

BootStomp: Seeds of Taint
● Data read from persistent storage

● Data used by the unlocking procedure

BootStomp: Seeds of Taint
● Data read from persistent storage

● Data used by the unlocking procedure

BootStomp must find these functions

BootStomp: Seeds of Taint
Automatic detection of functions:

● Identify the functions based on the “log” strings

● Analysis to identify the arguments to taint

BootStomp: Seeds of Taint
Optionally, provided by the security analyst

● Useful for finding the unlocking function
○ Several do not contain log messages

BootStomp: Taint Propagation and Removal
● Taints are symbolic expressions encoding how the value is computed

● Propagated and removed implicitly during the dynamic symbolic

execution traversal

BootStomp: Taint Propagation and Removal

BootStomp: Sinks of Taint
● Memcpy-like functions

● Dereference of a tainted variable

● Comparisons of tainted variables in loops’ conditions

● Write to a persistent storage of a tainted variable

BootStomp: Sinks of Taint
● Memcpy-like functions

○ Small functions with loop copying data between two buffers

○ Many callers (a threshold is used)

● Dereference of a tainted variable

● Comparisons of tainted variables in loops’ conditions

● Write to a persistent storage of a tainted variable

BootStomp: Sinks of Taint
● Memcpy-like functions

● Dereference of a tainted variable

● Comparisons of tainted variables in loops’ conditions

● Write to a persistent storage of a tainted variable

BootStomp: Taint Checking
● An alert is raised when a tainted variable:

○ Reaches a memcpy-like function

○ Gets dereferenced

○ Can control the number of iterations of a loop

○ Gets written to a persistent storage

BootStomp: Taint Checking
● An alert is raised when a tainted variable:

○ Reaches a memcpy-like function

○ Gets dereferenced

○ Can control the number of iterations of a loop

○ Gets written to a persistent storage

● A traceable output is produced

Limitation: Path Explosion Problem
● Limited function traversal

Limitation: Path Explosion Problem
● Limited function traversal

○ Tainted arguments and call stack size < threshold ?

Limitation: Path Explosion Problem
● Limited function traversal

○ Tainted arguments and call stack size < threshold ?

■ Yes → step into

■ No → step over

Limitation: Path Explosion Problem
● Limited function traversal

● Limited loop iterations

Limitation: Path Explosion Problem
● Limited function traversal

● Limited loop iterations
○ Threshold used

Limitation: Path Explosion Problem
● Limited function traversal

● Limited loop iterations

● Timeout

Outline
● Booting Process

● Unlocking Mechanism

● BootStomp

● Evaluation

● Mitigations

● Conclusions

BootStomp has been evaluated against 4 different

bootloaders

Evaluation: Bugs

Bootloader Total Alerts Bugs

Qualcomm (Latest) 4 0

Qualcomm (Old) 8 1 (already known)

NVIDIA 7 1

HiSilicon 17 5

MediaTek - -

Total 36 7 (6 0days)

(Further details in the paper)

Ok good, but how bad are them?

Evaluation: Bugs

Evaluation: Bugs

Evaluation: Bugs
Great, but what can you do with it?

Evaluation: Bugs
Great, but what can you do with it?

● A lot! Example: some bootloaders work in EL3

Evaluation: Unlocking Bypass

Bootloader Writes to flash? Potentially vulnerable?

Qualcomm (Latest) 6 YES*

Qualcomm (Old) 4 YES*

NVIDIA 9 NO

HiSilicon 17 YES*

MediaTek 1 NO

(Yes means BootStomp found a write to a persistent storage)

Bootloader Unlocking Bypass
 memcpy(&expected_digest, &from_flash, 32);
 compute_sha(oem_key, input_len, &key_digest);
 if (memcmp(&key_digest, &expected_digest, 32))
 {

// Log the result
 return 1;

}

hash_func("bonaciao", &key_digest, &hash_output);
 if (write_to_flash(hash_output, 16) & 0x80000000))
 {

// Log the result
 return 0;
 }

Overview

● Booting Process

● Unlocking Mechanism

● BootStomp

● Evaluation

● Mitigations

● Conclusions

Mitigations
● Google approach

○ The key used to encrypt/decrypt user data contains the security state (locked/unlock)

Mitigations
● Google approach

○ The key used to encrypt/decrypt user data contains the security state (locked/unlock)

■ If the state changes, the key changes → user’s data cannot be decrypted

Mitigations
● Google approach

○ The key used to encrypt/decrypt user data contains the security state (locked/unlock)

■ If the state changes, the key changes → user’s data cannot be decrypted

● Our proposal
○ Security state stored in the eMMC’s Replay Protected Memory Block (RPMB)

Mitigations
● Google approach

○ The key used to encrypt/decrypt user data contains the security state (locked/unlock)

■ If the state changes, the key changes → user’s data cannot be decrypted

● Our proposal
○ Security state stored in the eMMC’s Replay Protected Memory Block (RPMB)

■ Modify the trusted OS to allow only the bootloader to modify it

Outline
● Booting Process

● Unlocking Mechanism

● BootStomp

● Evaluation

● Mitigations

● Conclusions

Responsible Disclosure

All bugs reported, acknowledged and already fixed

Conclusions
✓ First study to explore Android bootloaders

✓ Automated technique to analyze bootloaders with traceable alerts

✓ Found 6 zero days in various bootloaders

✓ https://github.com/ucsb-seclab/bootstomp

https://github.com/ucsb-seclab/bootstomp

That’s All

 Questions?

Buffer overflow
 // oem_get_info function

 oem_read(block, block_len);
buf = malloc(block[0]); // size block

// .. additional code ..
number_or_blocks = block[1];
block_id = block[2];

if (number_of_blocks == 1 || block_id == number_of_blocks) {
return;

}

memcpy(buf + off, block[3], 0x300);

Buffer overflow
 // oem_get_info function

 oem_read(block, block_len);
buf = malloc(block[0]); // size block

// .. additional code ..
number_or_blocks = block[1];
block_id = block[2];

if (number_of_blocks == 1 || block_id == number_of_blocks) {
return;

}

memcpy(buf + off, block[3], 0x300);

Buffer overflow
 // oem_get_info function

 oem_read(block, block_len);
buf = malloc(block[0]); // size block

// .. additional code ..
number_or_blocks = block[1];
block_id = block[2];

if (number_of_blocks == 1 || block_id == number_of_blocks) {
return;

}

memcpy(buf + off, block[3], 0x300);

Buffer overflow
 // oem_get_info function

 oem_read(block, block_len);
buf = malloc(block[0]); // size block

// .. additional code ..
number_or_blocks = block[1];
block_id = block[2];

if (number_of_blocks == 1 || block_id == number_of_blocks) {
return;

}

memcpy(buf + off, block[3], 0x300); // buffer overflow!

If the bootloader only loads the Android O.S., how

can an attacker harm the device?

If the bootloader only loads the Android O.S., how

can an attacker harm the device?

Bootloaders are very diverse

BL33 in practice
Qualcomm and NVIDIA’s:

● BL33 conforms very closely to Google’s Verified Boot guidelines,
● BL33 runs in EL1

BL33 in practice
Qualcomm and NVIDIA’s

Huawei HiSilicon:

● BL33 is also responsible for initializing modem and peripherals
● BL33 runs in EL3.

BL33 in practice
Qualcomm and NVIDIA’s

Huawei HiSilicon

MediaTek:

● BL33 is also responsible for initializing modem
● BL33 runs in EL1

