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What is a Bootloader?



What is a Bootloader?

Software module which:

e Initializes the device and its peripherals
e Loads the kernel code from secondary storage

e Jumpstoit



We focused on Android bootloaders



Android Bootloaders Overview

e No standard (e.g., ARM gives guidelines)
e Booting through several stages

e Protect integrity of user's device and data:
o  Trusted boot

e Bootloader unlocking



Why attacking bootloaders?



Attacking Bootloaders

An attacker controlling the bootloader might:

e Boot custom Android OS (bootloader unlocking)
o Persistent rootkit

e DBrick the device

e In some cases, achieve controls over peripherals



Safety Properties
Integrity of the booting process

e Android OS is verifiably to be in a non-tampered state

e Aroot process cannot interfere with peripherals setup
Unlocking security mechanism

e Aroot process cannot unlock the bootloader

e Physical attacker cannot unlock the bootloader



Threat Model
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e Attacker has control over the Android OS

o Root privileges



Threat Model

e Attacker has control over the Android OS
o Root privileges
e If an attacker has root privileges is game over, why even bother?

o The safety properties should hold anyway
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Bootloader Unlocking
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Bootloader Unlocking

Against an attacker with physical access

STechguide
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Bootloader Unlocking

The unlocking state (device’s security state) saved on persistent storage

e It should be writable only by high privileged components (e.g.,

bootloader or secure OS)



Can a compromised Android OS affect the booting

process?



Can a compromised Android OS affect the booting

process?

Yes!
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We need a tool to automatically verity

the safety properties
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Towards a Bootloader Analyzer

Bootloaders are hard to analyze:

e The source code is hardly available — Binary (blob)
e Dynamic execution is impractical - Hardware is required

e Execute before the Android OS — Known library/syscall are not in use

o There is no memcpy!
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BootStomp: A Bootloader Analyzer

Automatic static binary tool for finding security vulnerabilities in

bootloaders

e Determine whether attacker-controlled data can influence the

bootloader intended behavior

e Traceable output

o Verify generated alerts
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BootStomp: A Bootloader Analyzer

BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

e [t uses a fully symbolic taint analysis engine to trace

attacker-controlled data



BootStomp: A Bootloader Analyzer

BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

e Arbitrary memory writes
e Arbitrary memory reads
e Attacker can control loops iterations

e Bypass unlocking mechanism

o Functions overwriting the security state on persistent storage



BootStomp: A Bootloader Analyzer
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BootStomp: A Bootloader Analyzer

BootStomp uses multi-tag taint analysis based on under-constrained

dynamic symbolic execution

e Seeds of taint
e Taint propagation and removal
e Sinks of taint

e Taint checking



BootStomp: Seeds of Taint

e Data read from persistent storage

e Data used by the unlocking procedure



BootStomp: Seeds of Taint

e Data read from persistent storage

e Data used by the unlocking procedure

BootStomp must find these functions



® 102 sub_7001F04 ((__ int6A"

BootStomp: Seeds of Taint

Automatic detection of functions:

e Identify the functions based on the “log” strings

e Analysis to identify the arguments to taint

92 LA o
93 vlié = sub_7002D00 (a3, v1l, v1i2, 1i64); // emmc read function
94 A= = 9.

95
96 £1] )
97 sub_7/0032BC (0xB3u, 8u);

‘ 98 res Qi64;
55 i
100 {
101 sub_705F924 ((__integf" ™q\n", v23, v1i7, vig, v1i9, v20, v21, v22, v45);// logging function 1

3d\n", v23, v39, v40, v4l, v42, v43, v44, v45);// logging function 2

P 103 result = OxXFFFFFFFFi64)

104 }
105 return result;

® 106)



BootStomp: Seeds of Taint

Optionally, provided by the security analyst

e Useful for finding the unlocking function

o Several do not contain log messages



BootStomp: Taint Propagation and Removal

e Taints are symbolic expressions encoding how the value is computed

e Propagated and removed implicitly during the dynamic symbolic

execution traversal



BootStomp: Taint Propagation and Removal

Code Memory

—» ty =seed_func();

—» X= ty + 5; /
—» x=0xdeadbeef: X |

ty Tainted

Symbolic expressions Page

—» ty =TAINT ty
—p X=TAINT ty+5

——3p X = 0xdeadbeef
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e Memcpy-like functions
e Dereference of a tainted variable
e Comparisons of tainted variables in loops’ conditions

e Write to a persistent storage of a tainted variable
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BootStomp: Taint Checking

e An alertis raised when a tainted variable:

O

O

O

O

Reaches a memcpy-like function
Gets dereferenced
Can control the number of iterations of a loop

Gets written to a persistent storage

e A traceable output is produced
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Limitation: Path Explosion Problem

e Limited function traversal

o Tainted arguments and call stack size < threshold ?
m  Yes — stepinto

m No — stepover
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e Limited function traversal

e Limited loop iterations
o Threshold used



Limitation: Path Explosion Problem

e Limited function traversal
e Limited loop iterations

e Timeout
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BootStomp has been evaluated against 4 different

bootloaders



Evaluation: Bugs

Bootloader
Qualcomm (Latest)
Qualcomm (Old)
NVIDIA
HiSilicon
MediaTek

Total

Total Alerts

17

36

Bugs
0
1 (already known)
1
5

7 (6 Odays)

(Further details in the paper)



Ok good, but how bad are them?



valuation: Bugs
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Evaluation: Bugs

Great, but what can you do with it?

e Alot! Example: some bootloaders work in EL3



Evaluation: Unlocking Bypass

Bootloader Writes to flash? Potentially vulnerable?
Qualcomm (Latest) 6 YES*
Qualcomm (Old) 4 YES*
NVIDIA 9 NO
HiSilicon 17 YES*
MediaTek 1 NO

(Yes means BootStomp found a write to a persistent storage)



Bootloader Unlocking Bypass

(&expected digest, &from flash, 32);
oem key, input len, &ke

Y

// Log thé

onaciao", &key dige
to flash (hash output, 16)

&hash output);

// Log
return O;
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Mitigations

e Google approach
o The key used to encrypt/decrypt user data contains the security state (locked /unlock)

m [f the state changes, the key changes — user’s data cannot be decrypted

e Our proposal

o  Security state stored in the eMMC's Replay Protected Memory Block (RPMB)
m  Modify the trusted OS to allow only the bootloader to modify it
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Responsible Disclosure

All bugs reported, acknowledged and already fixed




Conclusions

v First study to explore Android bootloaders

v Automated technique to analyze bootloaders with traceable alerts

v Found 6 zero days in various bootloaders

v https: //github.com /ucsb-seclab/bootstomp



https://github.com/ucsb-seclab/bootstomp

That's All

Questions?









Buffer overtlow

// oem get info function

oem read(block, block len);
buf = malloc(block[0]); // size block

// .. additional code
number or blocks = block[1l];
block_id = block[2];

if (number of blocks ==

|| block _id == number of blocks) {
return;

}

memcpy (buf + off, block[3], 0x300);
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Buffer overtlow

// oem get info function

oem read(block, block len);
buf = malloc(block[0]); // size block

// .. additional code
number or blocks = block[1l];
block _id = block[2];

if (number of blocks ==

| | block id == number of blocks) {
return;

}

memcpy (buf + off, block[3], 0x300); // buffer overflow!
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It the bootloader only loads the Android O.S., how

can an attacker harm the device?

Bootloaders are very diverse



BL33 in practice

Qualcomm and NVIDIA's:

e BL33 conforms very closely to Google’s Verified Boot guidelines,
e BL33runsinELl



BL33 in practice

Qualcomm and NVIDIA’s
Huawei HiSilicon:

e BL33is also responsible for initializing modem and peripherals
e BL33 runsin EL3.



BL33 in practice

Qualcomm and NVIDIA’s
Huawei HiSilicon

MediaTek:

e BL33 is also responsible for initializing modem
e BL33runsin ELI



