
SAILFISH
Vetting Smart Contract

State-Inconsistency Bugs in Seconds
Priyanka Bose, Dipanjan Das, Yanju Chen,Yu Feng,

Christopher Kruegel, Giovanni Vigna

Smart contracts are popular

● They process high value money transactions

2

● Smart contracts are computer programs run on a Ethereum Virtual
Machine (EVM)

Smart contracts are popular

3

Total value locked across protocols ≈ 75B

● They process high value money transactions

● Smart contracts are computer programs Run on a Ethereum Virtual
Machine (EVM)

Smart contract attacks

Vulnerabilities in smart contracts result in a loss of millions …

4

Smart contract attacks

Vulnerabilities in smart contracts result in a loss of millions …

DAO 2016 $70M

5

Smart contract attacks

Vulnerabilities in smart contracts result in a loss of millions …

DAO 2016 $70M

BurgerSwap 2021 $7.2M

Cream Finance 2021 $17M

Fei Protocol 2022 $80M Many more …

6

Existing techniques

Oyente [Luu et. al., CCS 16]
Manticore [Trail of bits]
Mytril [Consensys]

Symbolic execution

Securify [Tsankov et. al., CCS 18]

Vandal [Brent et. al]

Slither [Feist et. al., WEBSTEB 19]
SmartCheck [Tikhomirov et. al., WEBSEB 18]

Static analysis

Sereum [Rodler et. el., NDSS 19]
ECFChecker [Grossman et. al., POPL 18]

Runtime analysis

ZEUS [Kalra et. al, NDSS 18],
SeRIF [Cecchetti et. al, S&P 21]

Verification

7

Existing techniques

Variety of techniques to
detect reentrancy and TOD

Symbolic techniques not
scalable for large contracts

Static techniques incurs false
positives

Relies on some bug
signatures, misses others

8

Contributions

● Scales well for large contracts and achieves precision

● A general technique to detect reentrancy and transaction order dependence (TOD)

9

Contributions

● Scales well for large contracts and achieves precision

● A general technique to detect reentrancy and transaction order dependence (TOD)

10

Precision Scalability

Contributions

● Scales well for large contracts and achieves precision

● A general technique to detect reentrancy and transaction order dependence (TOD)

11

Precision ScalabilitySailfish

Sailfish

Introduces State Inconsistency (SI), a general
definition of reentrancy and transaction order
dependence (TOD)

Defines read-write dependencies of a storage
variables as Hazardous access, a root cause of SI

12

Sailfish

Detects reentrancy and TOD

including the ones missed by

prior tools

13

Introduces State Inconsistency (SI), a general
definition of reentrancy and transaction order
dependence (TOD)

Defines read-write dependencies of a storage
variables as Hazardous access, a root cause of SI

Sailfish

Summarizes the contract storage variable using
scalable value-summary analysis

Combines static analysis and symbolic execution

14

Detects reentrancy and TOD

including the ones missed by

prior tools

Introduces State Inconsistency (SI), a general
definition of reentrancy and transaction order
dependence (TOD)

Defines read-write dependencies of a storage
variables as Hazardous access, a root cause of SI

Sailfish

Summarizes the contract storage variables using
scalable value-summary analysis

Combines static analysis and symbolic execution

Achieves scalability and
precision.

15

Detects reentrancy and TOD

including the ones missed by

prior tools

Introduces State Inconsistency (SI), a general
definition of reentrancy and transaction order
dependence (TOD)

Defines read-write dependencies of a storage
variables as Hazardous access, a root cause of SI

State Inconsistency (SI)

Smart contract: C
Methods: (f

1
, f

2
,…, f

n
)

Schedule: H contains ordered
 external/public function
 invocations of C

16

State Inconsistency (SI)

Initial state: S
0

Smart contract: C
Methods: (f

1
, f

2
,…, f

n
)

H
1

S
1Schedule: H contains ordered

 external/public function
 invocations of C

17

State Inconsistency (SI)

Initial state: S
0

Initial state: S
0

Smart contract: C
Methods: (f

1
, f

2
,…, f

n
)

H
1

S
1

S
2

H
2

Schedule: H contains ordered
 external/public function
 invocations of C

18

State Inconsistency (SI)

Initial state: S
0

Initial state: S
0

Smart contract: C
Methods: (f

1
, f

2
,…, f

n
)

H
1

S
1

S
2

H
2

Schedule: H contains ordered
 external/public function
 invocations of C

H
1
 and H

2
 contain

same function
invocations

19

State Inconsistency (SI)

Initial state: S
0

Initial state: S
0

Smart contract: C
Methods: (f

1
, f

2
,…, f

n
)

H
1

S
1

S
2

If H
1
≠

H

2
and S

1
 ≠ S

2
, contract C is said to have a State Inconsistency bug

H
2

Schedule: H contains ordered
 external/public function
 invocations of C

H
1
 and H

2
 contain

same function
invocations

20

State Inconsistency bugs

21

State Inconsistency bugs

Reentrancy TOD

single-function cross-function

A subset of
generalized
TOD

create-based

delegate-based

stale-read

destructive-write

State Inconsistency bugs

22

State Inconsistency bugs

Reentrancy TOD

single-function cross-function

A subset of
generalized
TOD

create-based

delegate-based

stale-read

destructive-write

State Inconsistency bugs

23

State Inconsistency bugs

Reentrancy TOD

single-function cross-function

A subset of
generalized
TOD

create-based

delegate-based

stale-read

destructive-write

The details of the other bugs
can be found in our paper

The Reentrancy problem

24

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

transfer_user(amount)

balance[User] -= amount

2

3

Bank state

balance[User]: 100

Bank’s balance: 500

bank.withdraw(100)

User

User state

User’s balance: 0

The Reentrancy problem

25

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: 100

Bank’s balance: 500

100100

bank.withdraw(100)

User
transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 0

The Reentrancy problem

26

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: 100

Bank’s balance: 500

100100

bank.withdraw(100)

User
transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 0

The Reentrancy problem

27

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: 100

Bank’s balance: 400

100100

bank.withdraw(100)

User
transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 100

The Reentrancy problem

28

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: 100

Bank’s balance: 400

100100

bank.withdraw(100)

User
transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 100

The Reentrancy problem

29

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: 0

Bank’s balance: 400

bank.withdraw(100)

User
transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 100

1000

The Reentrancy problem

30

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: 0

Bank’s balance: 400

bank.withdraw(100)

User
transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 100

1000

The Reentrancy problem

31

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: 0

Bank’s balance: 400

bank.withdraw(100)

User
transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 100

1000

The Reentrancy problem

32

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: 0

Bank’s balance: 400

bank.withdraw(100)

User
transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 100

Non-reentrant execution

The contract’s state
is expected

1000

The Reentrancy problem

bank.withdraw(100)

Attacker

33

Bank state

balance[User]: 100

Bank’s balance: 400
Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

100100

transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 100

The Reentrancy problem

34

Bank state

balance[User]: 100

Bank’s balance: 400

bank.withdraw(100)

Attacker

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

100100

transfer_user(amount)

balance[User] -= amount

2

3

User state

User’s balance: 100

The Reentrancy problem

35

Bank state

balance[User]: 100

Bank’s balance: 400

bank.withdraw(100)

Attacker

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

100100

transfer_user(amount)

balance[User] -= amount

2

3

Stale read

balance[User] is
not updated yet

User state

User’s balance: 100

The Reentrancy problem

36

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: 100

Bank’s balance: 300

Stale read

100100

bank.withdraw(100)

Attacker

balance[User] is
not updated yet

Stale read
User state

User’s balance: 200

transfer_user(amount)

balance[User] -= amount

2

3

The Reentrancy problem

37

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: -100

Bank’s balance: 300

Deferred update

User balance is
now negative

bank.withdraw(100)

Attacker
transfer_user(amount)

balance[User] -= amount

2

3
100-100

User state

User’s balance: 200

The Reentrancy problem

38

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: -100

Bank’s balance: 300

bank.withdraw(100)

Attacker
transfer_user(amount)

balance[User] -= amount

2

3
-100

User state

User’s balance: 200

The attacker
drains out more
than 100 Ethers

The Reentrancy problem

39

Bank state

balance[User]: -100

Bank’s balance: 300

bank.withdraw(100)

Attacker

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

transfer_user(amount)

balance[User] -= amount

2

3
-100

Reentrant execution

The contract’s state
is not expected

User state

User’s balance: 200

SI and Reentrancy

40

Non-reentrant execution (H
1
)

Bank
withdraw(amount) {

}

if (balance[User] >= amount)

transfer_user(amount)

balance[User] -= amount

0

bank.withdraw(100)

User

1

2

3

Bank
withdraw(amount) {

}

if (balance[User] >= amount)

balance[User] -= amount

-100

bank.withdraw(100)

Attacker

1

2

3

Reentrant execution (H
2
)

transfer_user(amount)

SI and Reentrancy

41

H
1

≠ H
2
 and Final state@H

1
≠ Final state@H

2

Non-reentrant execution (H
1
)

Bank
withdraw(amount) {

}

if (balance[User] >= amount)

transfer_user(amount)

balance[User] -= amount

0

bank.withdraw(100)

User

1

2

3

Bank
withdraw(amount) {

}

if (balance[User] >= amount)

balance[User] -= amount

-100

bank.withdraw(100)

Attacker

1

2

3

Reentrant execution (H
2
)

transfer_user(amount)

SI bugs: Intuition

● SI bugs occur because different schedules result in different final state, i.e.,
different values of storage variables.

● Two such schedules can result in different contract states if:

○ There exist two operations, at least one is a write access, on a common

storage variable

○ The relative order of such operations differ in these two schedules.

We define such a read-write hazard as Hazardous access

42

Hazardous access

43

if (balance[User] >= amount)

balance[User] -= amount

balance[User] -= amount

transfer_user(amount)

if (balance[User] >= amount)

Invocation 2

Invocation 1

transfer_user(amount)

Hazardous access

44

if (balance[User] >= amount)

balance[User] -= amount

if (balance[User] >= amount)

Invocation 2

Invocation 1

balance[User] -= amount

transfer_user(amount)

transfer_user(amount)

Hazardous access

45

if (balance[User] >= amount)

balance[User] -= amount

if (balance[User] >= amount)

Invocation 2

Invocation 1

balance[User] -= amount

transfer_user(amount)

transfer_user(amount)

Explorer: Hazardous access detection

46

Explorer: Hazardous access detection

Smart
contract

Inter-procedural
CFGs (ICFGs)

Static analysis

Storage dependency
graph (SDG)

Data and control flow
relations

Hazardous accesses

47

Smart contract

Static analysis

Hazardous accessesICFG SDG

Reachability in SDG

ext. call

Explorer: Reachability in SDG

48

49

if (balance[User] >= amount)

balance[User] -= amount

if (balance[User] >= amount)

Invocation 2

Invocation 1

Explorer: Reachability in SDG

balance[User] -= amount

transfer_user(amount)

transfer_user(amount)

-colored instructions form
 a hazardous access pair

50

if (balance[User] >= amount)

balance[User] -= amount

if (balance[User] >= amount)

Invocation 2

Invocation 1

Is the hazardous access
pair reachable from the

external call?

Explorer: Reachability in SDG

External call

balance[User] -= amount

transfer_user(amount)

transfer_user(amount)

Explorer: Reachability in SDG

Smart contract

Static analysis

Hazardous accessesICFG SDG

Reachability in SDG

ext. call
not

reachable

Benign

51

Explorer: Reachability in SDG

Smart contract

Static analysis

Hazardous accessesICFG SDG

Reachability in SDG

ext. call

reachable

Likely
Vulnerable

Can be false alarm

52

Explorer: Counter-example generation

Smart contract

Static analysis

Hazardous accessesICFG SDG

Reachability in SDG

ext. call

reachable

Counter
example

53

54

if (balance[User] >= amount)

balance[User] -= amount

if (balance[User] >= amount)

Explorer: Counter-example generation

A counter-example is a slice
containing the problematic
hazardous access pair

balance[User] -= amount

transfer_user(amount)

transfer_user(amount)

Refiner: Value-summary analysis + Symbolic execution

● Value-summary analysis (VSA) outputs the potential symbolic values of
each storage variable under different constraints

● This will be used as the precondition of the symbolic evaluation

55

Refiner: Value-summary analysis + Symbolic execution

56

if (balance[User] >= amount)

balance[User] -= amount

transfer_user(amount)

withdraw

if (mutex == false)

mutex = true

mutex = false

Refiner: Value-summary analysis + Symbolic execution

57

if (balance[User] >= amount)

withdraw

if (mutex == false)

mutex = true

mutex = false

Value-summary analysis outputs the
following for mutex:

mutex: {<mutex=false, false>,
 <mutex=false, true>}

pre-condition value
balance[User] -= amount

transfer_user(amount)

Refiner: Value-summary analysis + Symbolic execution

Counter-example

Value-summary

Symbolic
Evaluation

Benign

Likely
Vulnerable

58

Refiner: Value-summary analysis + Symbolic execution

59

if (balance[User] >= amount)

if (mutex == false)

mutex = true

mutex = false

if (mutex == false)

Invocation 2

Invocation 1

balance[User] -= amount

transfer_user(amount)

Refiner: Value-summary analysis + Symbolic execution

60

if (balance[User] >= amount)

if (mutex == false)

mutex = true

mutex = false

if (mutex == false)

Invocation 2

Invocation 1

balance[User] -= amount

transfer_user(amount)

Refiner: Value-summary analysis + Symbolic execution

61

if (balance[User] >= amount)

if (mutex == false)

mutex = true

mutex = false

if (mutex == false)

Current program state:
mutex = true

Pre-condition:
mutex can be false if mutex
is currently set to false

Invocation 2

Invocation 1

balance[User] -= amount

transfer_user(amount)

Refiner: Value-summary analysis + Symbolic execution

62

if (balance[User] >= amount)

if (mutex == false)

mutex = true

mutex = false

if (mutex == false)

Not satisfiable

Invocation 2

Invocation 1

balance[User] -= amount

transfer_user(amount)

Current program state:
mutex = true

Pre-condition:
mutex can be false if mutex
is currently set to false

Refiner: Value-summary analysis + Symbolic execution

63

if (balance[User] >= amount)

if (mutex == false)

mutex = true

mutex = false

if (balance[User] >= amount)

if (mutex == false)

mutex = true

Not satisfiable

Invocation 2

Invocation 1

balance[User] -= amount

transfer_user(amount)

Current program state:
mutex = true

Pre-condition:
mutex can be false if mutex
is currently set to false

Results

Sailfish is evaluated against
Securify, Vandal, Oyente,
Mythril

The dataset consists of
89,853 Solidity open-sourced
smart contracts

(i) Vulnerability detection

(ii) Performance

64

➔ Crawled from Etherscan
➔ All contracts till October, 2020
➔ Deduplicated

Vulnerability detection

65

Securify 6,321 19,031

Reentrancy TODTool

Vandal 45,971 -

Mythril 3,708 -

Oyente 269 3,472

Sailfish 2,076 7,555

Vulnerability detection

66

Securify 6,321 19,031

Reentrancy TODTool

Vandal 45,971 -

Mythril 3,708 -

Oyente 269 3,472

Sailfish 2,076 7,555

Mythril timed out for
more than 50% of the
contracts

Oyente errored out for
around 60% of the
contracts

Vulnerability detection

67

Securify 6,321 19,031

Reentrancy TODTool

Vandal 45,971 -

Mythril 3,708 -

Oyente 269 3,472

Sailfish 2,076 7,555

Manually verified randomly-chosen 750
contracts from the our dataset

➔ [0, 3000] lines of code

➔ No tool errored out/timed out

➔ Found 26 reentrancy bugs

Vulnerability detection

68

Securify 6,321 19,031

Reentrancy TODTool

Vandal 45,971 -

Mythril 3,708 -

Oyente 269 3,472

Sailfish 2,076 7,555

Manually verified randomly-chosen 750
contracts from the our dataset

➔ [0, 3000] lines of code

➔ No tool errored out/timed out

➔ Found 26 reentrancy bugs

Securify 9 (35%) 163 (22%)

True positive False positiveTool

Vandal 26 (100%) 626 (86%)

Mythril 7 (27%) 334 (46%)

Oyente 8 (31%) 16 (2%)

Sailfish 26 (100%) 11 (1.5%)

17 (65%)

False negative

0 (0%)

19 (73%)

18 (69%)

0 (0%)

Reentrancy

Vulnerability detection

69

Securify 6,321 19,031

Reentrancy TODTool

Vandal 45,971 -

Mythril 3,708 -

Oyente 269 3,472

Sailfish 2,076 7,555

Manually verified randomly-chosen 750
contracts from the our dataset

➔ [0, 3000] lines of code

➔ No tool errored out/timed out

➔ Found 26 reentrancy bugs

Securify 9 (35%) 163 (22%)

True positive False positiveTool

Vandal 26 (100%) 626 (86%)

Mythril 7 (27%) 334 (46%)

Oyente 8 (31%) 16 (2%)

Sailfish 26 (100%) 11 (1.5%)

17 (65%)

False negative

0 (0%)

19 (73%)

18 (69%)

0 (0%)

Reentrancy

Vulnerability detection

70

Securify 6,321 19,031

Reentrancy TODTool

Vandal 45,971 -

Mythril 3,708 -

Oyente 269 3,472

Sailfish 2,076 7,555

Manually verified randomly-chosen 750
contracts from the our dataset

➔ [0, 3000] lines of code

➔ No tool errored out/timed out

➔ Found 26 reentrancy bugs

Reentrancy

➢ Least false positives
➢ No false negatives
➢ Finds all true bugs

Securify 9 (35%) 163 (22%)

True positive False positiveTool

Vandal 26 (100%) 626 (86%)

Mythril 7 (27%) 334 (46%)

Oyente 8 (31%) 16 (2%)

Sailfish 26 (100%) 11 (1.5%)

17 (65%)

False negative

0 (0%)

19 (73%)

18 (69%)

0 (0%)

Vulnerability detection

71

Securify 6,321 19,031

Reentrancy TODTool

Vandal 45,971 -

Mythril 3,708 -

Oyente 269 3,472

Sailfish 2,076 7,555

Manually verified randomly-chosen 750
contracts from the our dataset

➔ [0, 3000] lines of code

➔ No tool errored out/timed out

➔ Found 26 reentrancy bugs

Reentrancy

● Sailfish found 47 bugs not found by
any other tool

Securify 9 (35%) 163 (22%)

True positive False positiveTool

Vandal 26 (100%) 626 (86%)

Mythril 7 (27%) 334 (46%)

Oyente 8 (31%) 16 (2%)

Sailfish 26 (100%) 11 (1.5%)

17 (65%)

False negative

0 (0%)

19 (73%)

18 (69%)

0 (0%)

Performance

72

Max MinSa
ilf

ish

Se
cu

rif
y

Oye
nte

M
yt

hril

Van
dal

31s197s 183s941s

Time

Performance

Sailfish is 30 times
faster than Mythril

Sailfish is 6 times
faster than Securify

73

Max MinSa
ilf

ish

Se
cu

rif
y

Oye
nte

M
yt

hril

Van
dal

197s 183s941s

Time

31s

Conclusion

➢ We presented Sailfish, a bug finding tool for reentrancy and TOD

74

Conclusion

➢ We presented Sailfish, a bug finding tool for reentrancy and TOD

➢ Sailfish generalized reentrancy and TOD in terms of State Inconsistency

75

Conclusion

➢ We presented Sailfish, a bug finding tool for reentrancy and TOD

➢ Sailfish generalized reentrancy and TOD in terms of State Inconsistency

➢ Sailfish combines static analysis and VSA-enabled symbolic execution to
achieve both precision and scalability

76

Conclusion

➢ We presented Sailfish, a bug finding tool for reentrancy and TOD

➢ Sailfish generalized reentrancy and TOD in terms of State Inconsistency

➢ Sailfish combines static analysis and VSA-enabled symbolic execution to
achieve both precision and scalability

➢ Sailfish outperforms state-of-the-art techniques in both performance and
bug finding ability

77

THANKS!
@cinderella0x80

78

priyanka@cs.ucsb.edu

https://github.com/ucsb-seclab/sailfish

