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Smart contracts are popular

● They process high value money transactions 
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Machine (EVM)
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Vulnerabilities in smart contracts result in a loss of millions …
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Smart contract attacks

Vulnerabilities in smart contracts result in a loss of millions …

DAO 2016 $70M

BurgerSwap 2021 $7.2M

Cream Finance 2021 $17M

Fei Protocol 2022 $80M Many more …
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Existing techniques

Oyente [Luu et. al., CCS 16]
Manticore [Trail of bits] 
Mytril [Consensys]

Symbolic execution

Securify [Tsankov et. al., CCS 18] 

Vandal [Brent et. al] 

Slither [Feist et. al., WEBSTEB 19]
SmartCheck [Tikhomirov et. al., WEBSEB 18]

Static analysis

Sereum [Rodler et. el., NDSS 19] 
ECFChecker [Grossman et. al., POPL 18]

Runtime analysis

ZEUS [Kalra et. al, NDSS 18], 
SeRIF [Cecchetti et. al, S&P 21]

Verification
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Existing techniques

Variety of techniques to 
detect reentrancy and TOD

Symbolic techniques not 
scalable for large contracts

Static techniques incurs false 
positives

Relies on some bug 
signatures, misses others
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Contributions

● Scales well for large contracts and achieves precision

● A general technique to detect reentrancy and transaction order dependence (TOD)
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Contributions

● Scales well for large contracts and achieves precision

● A general technique to detect reentrancy and transaction order dependence (TOD)
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Precision ScalabilitySailfish



Sailfish

Introduces State Inconsistency (SI), a general 
definition of reentrancy and transaction order 
dependence (TOD)

Defines read-write dependencies of a storage 
variables as Hazardous access, a root cause of SI

12



Sailfish

Detects reentrancy and TOD 

including the ones missed by 

prior tools

13

Introduces State Inconsistency (SI), a general 
definition of reentrancy and transaction order 
dependence (TOD)

Defines read-write dependencies of a storage 
variables as Hazardous access, a root cause of SI



Sailfish

Summarizes the contract storage variable using 
scalable value-summary analysis

Combines static analysis and symbolic execution 

14

Detects reentrancy and TOD 

including the ones missed by 

prior tools

Introduces State Inconsistency (SI), a general 
definition of reentrancy and transaction order 
dependence (TOD)

Defines read-write dependencies of a storage 
variables as Hazardous access, a root cause of SI



Sailfish

Summarizes the contract storage variables using 
scalable value-summary analysis

Combines static analysis and symbolic execution 

Achieves scalability and 
precision.
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Detects reentrancy and TOD 

including the ones missed by 

prior tools

Introduces State Inconsistency (SI), a general 
definition of reentrancy and transaction order 
dependence (TOD)

Defines read-write dependencies of a storage 
variables as Hazardous access, a root cause of SI
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State Inconsistency (SI)

Initial state: S
0

Initial state: S
0

Smart contract: C
Methods: (f

1
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,…, f
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H
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S
1

S
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If H
1
≠

 
H

2 
and  S

1
 ≠  S

2
, contract C is said to have a State Inconsistency bug

H
2

Schedule: H contains ordered   
                     external/public function 
                     invocations of C

H
1
 and H

2
 contain 

same function 
invocations
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State Inconsistency bugs
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State Inconsistency bugs
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State Inconsistency bugs

Reentrancy TOD

single-function cross-function

A subset of 
generalized 
TOD 

create-based

delegate-based

stale-read

destructive-write

The details of the other bugs 
can be found in our paper



The Reentrancy problem
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The Reentrancy problem

bank.withdraw(100)
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The Reentrancy problem
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Bank

1

withdraw(amount) {

}
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Bank state
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The Reentrancy problem
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The Reentrancy problem

38

Bank

1

withdraw(amount) {

}

if (balance[User] >= amount)

Bank state

balance[User]: -100

Bank’s balance: 300

bank.withdraw(100)

Attacker
transfer_user(amount)

balance[User] -= amount

2

3
-100

User state

User’s balance: 200

The attacker 
drains out more 
than 100 Ethers 



The Reentrancy problem
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SI and Reentrancy
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SI and Reentrancy
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SI bugs: Intuition

● SI bugs occur because different schedules result in different final state, i.e., 
different values of storage variables.

● Two such schedules can result in different contract states if:

○ There exist two operations, at least one is a write access, on a common 

storage variable

○ The relative order of such operations differ in these two schedules.

We define such a read-write hazard as Hazardous access
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Hazardous access
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Hazardous access
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Hazardous access
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Explorer: Hazardous access detection
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Explorer: Hazardous access detection

Smart 
contract

Inter-procedural
CFGs (ICFGs)

Static analysis

Storage dependency 
graph (SDG)

Data and control flow 
relations

Hazardous accesses
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Smart contract

Static analysis

Hazardous accessesICFG SDG

Reachability in SDG

ext. call

Explorer: Reachability in SDG
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if (balance[User] >= amount)

balance[User] -= amount

if (balance[User] >= amount)

Invocation 2

Invocation 1

Explorer: Reachability in SDG

balance[User] -= amount

transfer_user(amount)

transfer_user(amount)

-colored instructions form  
  a hazardous access pair
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if (balance[User] >= amount)

balance[User] -= amount

if (balance[User] >= amount)

Invocation 2

Invocation 1

Is the hazardous access 
pair reachable from the 

external call?

Explorer: Reachability in SDG

External call

balance[User] -= amount

transfer_user(amount)

transfer_user(amount)



Explorer: Reachability in SDG

Smart contract

Static analysis

Hazardous accessesICFG SDG

Reachability in SDG

ext. call
not 

reachable

Benign

51



Explorer: Reachability in SDG

Smart contract

Static analysis

Hazardous accessesICFG SDG

Reachability in SDG

ext. call

reachable

Likely
Vulnerable

Can be false alarm
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Explorer: Counter-example generation

Smart contract

Static analysis

Hazardous accessesICFG SDG

Reachability in SDG

ext. call

reachable

Counter 
example
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if (balance[User] >= amount)

balance[User] -= amount

if (balance[User] >= amount)

Explorer: Counter-example generation

A counter-example is a slice 
containing the problematic 
hazardous access pair

balance[User] -= amount

transfer_user(amount)
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Refiner: Value-summary analysis + Symbolic execution

● Value-summary analysis (VSA) outputs the potential symbolic values of 
each storage variable under different constraints

● This will be used as the precondition of the symbolic evaluation

55



Refiner: Value-summary analysis + Symbolic execution
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Refiner: Value-summary analysis + Symbolic execution
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if (balance[User] >= amount)

withdraw

if (mutex == false)

mutex = true

mutex = false

Value-summary analysis outputs the 
following for mutex:

mutex: {<mutex=false, false>, 
 <mutex=false, true>}

pre-condition value
balance[User] -= amount

transfer_user(amount)



Refiner: Value-summary analysis + Symbolic execution

Counter-example

Value-summary

Symbolic 
Evaluation

Benign

Likely
Vulnerable
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Refiner: Value-summary analysis + Symbolic execution
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Refiner: Value-summary analysis + Symbolic execution
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Refiner: Value-summary analysis + Symbolic execution
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if (balance[User] >= amount)

if (mutex == false)

mutex = true

mutex = false

if (mutex == false)

Current program state: 
mutex = true

Pre-condition:
mutex can be false if mutex 
is currently set to false

Invocation 2

Invocation 1

balance[User] -= amount

transfer_user(amount)



Refiner: Value-summary analysis + Symbolic execution
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Refiner: Value-summary analysis + Symbolic execution

63

if (balance[User] >= amount)

if (mutex == false)

mutex = true

mutex = false

if (balance[User] >= amount)

if (mutex == false)

mutex = true

Not satisfiable

Invocation 2

Invocation 1

balance[User] -= amount

transfer_user(amount)

Current program state: 
mutex = true

Pre-condition:
mutex can be false if mutex 
is currently set to false



Results

Sailfish is evaluated against 
Securify, Vandal, Oyente, 
Mythril

The dataset consists of 
89,853 Solidity open-sourced 
smart contracts

(i) Vulnerability detection      

(ii) Performance
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➔ Crawled from Etherscan
➔ All contracts till October, 2020
➔ Deduplicated
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Mythril timed out for 
more than 50% of the 
contracts

Oyente errored out for 
around 60% of the 
contracts
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Performance

Sailfish is 30 times 
faster than Mythril

Sailfish is 6 times 
faster than Securify
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Conclusion

➢ We presented Sailfish, a bug finding tool for reentrancy and TOD

➢ Sailfish generalized reentrancy and TOD in terms of State Inconsistency

➢ Sailfish combines static analysis and VSA-enabled symbolic execution to 
achieve both precision and scalability

➢ Sailfish outperforms state-of-the-art techniques in both performance and 
bug finding ability

77



THANKS!
@cinderella0x80

78

priyanka@cs.ucsb.edu

https://github.com/ucsb-seclab/sailfish


